

Microsoft ASP .NET Fast & Easy Web Development

by Nitin Pandey and NIIT ISBN: 1931841462

Premier Press © 2002 (398 pages)

Jump in with both feet, building Web pages the "fast & easy" way using
ASP.NET.

Table of Contents

 Microsoft ASP.NET Fast & Easy Web Development

 Introduction

 Chapter 1 - Introducing the .NET Initiative

 Chapter 2 - Installing and Configuring Visual Studio .NET

 Chapter 3 - Exploring the New Features of ASP.NET

 Chapter 4 - Visual Basic .NET Basics

 Chapter 5 - Beginning with a Simple ASP.NET Application

 Chapter 6 - Adding Server Controls to a Web Form

 Chapter 7 - Accepting Information Using Web Forms

 Chapter 8 - SQL Server Basics

 Chapter 9 - Getting Started with ADO.NET

 Chapter 10 - Managing Data from ASP.NET Applications

 Chapter 11 - Displaying Data Using Data Binding Server Controls

 Chapter 12 - Creating a User Control in ASP.NET

 Chapter 13 - Creating a Composite Control in ASP.NET

 Chapter 14 - Getting Started with ASP.NET Web Services

 Chapter 15 - Building ASP.NET Web Services

 Chapter 16 - Building Mobile Web Applications

 Chapter 17 - Managing State in ASP.NET Applications

 Chapter 18 - Caching in ASP.NET Applications

 Chapter 19 - Tracing ASP.NET Applications

 Chapter 20 - Debugging ASP.NET Applications

 Chapter 21 - Handling Exceptions in ASP.NET Applications

 Chapter 22 - Securing ASP.NET Applications

 Chapter 23 - Deploying ASP.NET Applications

 Appendix A - Keyboard Shortcuts in Visual Studio .NET

 Appendix B - Developing ASP.NET Applications in Visual C#

 Appendix C - Migrating from ASP 3.0 to ASP.NET

 Appendix D - Online Resources for ASP.NET

 Index

 List of Tables

 List of Sidebars

Microsoft ASP.NET Fast & Easy Web
Development
Nitin Pandey
with NIIT

A DIVISION OF PRIMA PUBLISHING

© 2002 by Premier Press, Inc. All rights reserved. No part of this book may be
reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system
without written permission from Premier Press, except for the inclusion of brief
quotations in a review.

The Premier Press logo, top edge printing, related trade dress, and Fast & Easy are
trademarks of Premier Press, Inc. and may not be used without written permission. All
other trademarks are the property of their respective owners.
Publisher: Stacy L. Hiquet
Associate Marketing Manager: Heather Buzzingham
Managing Editor: Sandy Doell
Acquisitions Editor: Stacy L. Hiquet
Project Editor: Cathleen D. Snyder
Editorial Assistant: Margaret Bauer
Interior Layout: Marian Hartsough Associates
Cover Design: Mike Tanamachi
Indexer: Sharon Hilgenberg
Proofreader: Lorraine Gunter

Microsoft, Windows, Internet Explorer, the .NET logo, Visual Basic, Visual C++, Visual
C#, and Windows NT are trademarks or registered trademarks of Microsoft Corporation
in the United States and/or other countries.
Important: Premier Press cannot provide software support. Please contact the
appropriate software manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style used
by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources
believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any
errors or omissions or the results obtained from use of such information. Readers should
be particularly aware of the fact that the Internet is an ever-changing entity. Some facts
may have changed since this book went to press.

ISBN: 1-931841-46-2

Library of Congress Catalog Card Number: 2001099842

Printed in the United States of America

01 02 03 04 05 RI 10 9 8 7 6 5 4 3 2 1
Acknowledgments

My parents and my brother and sisters have been a strong support to me through the
long hours that went into completing this book. They helped me bring out the best in the
book. My heartfelt gratitude goes to my parents for their support.

My project manager, Anita Sastry, has worked tirelessly, reviewing and giving her
valuable input to the book. Without her support, the book would not have become what it
is.

Thank you, Cathleen Snyder, for editing the book so well. Your valuable input has made
this a wonderful book that reads very well.

I would also like to thank Stacy Hiquet for making this book happen in the first place! You
provided active support in all development stages of the book.

My special thanks also go out to Sai Kishore, Kuljit Kaur, Surbhi Malhotra, Ambika
Trehan, Geetanjali Arora, Yesh Singhal, and Ashok Appu for their support and input for
some important chapters of the book.
About NIIT
NIIT is a Global IT Solutions Corporation with a presence in 38 countries. With its unique
business model and technology creation capabilities, NIIT delivers Software and
Learning Solutions to more than 1000 clients around the world.

The success of NIIT’s training solutions lies in its unique approach to education. NIIT’s
Knowledge Solutions Business conceives, researches, and develops all of the course
material. A rigorous instructional design methodology is followed to create engaging and
compelling course content. NIIT has one of the largest learning-material development
facilities in the world, with more than 5000 person-years of experience.

NIIT trains over 200,000 executives and learners each year in Information Technology
areas, using Stand-up training, video-aided instruction, computer-based training (CBT)
and Internet -based training (IBT). NIIT has been featured in the Guinness Book of World
Records for the largest number of learners trained in one year!

NIIT has developed over 10,000 hours of instructor-led training (ILT) and over 3000
hours of Internet -based training and computer-based training. IDC ranked NIIT among
the Top 15 IT training providers globally for the year 2000. Through the innovative use of
training methods and its commitment to research and development, NIIT has been in the
forefront of computer education and training for the past 20 years.

Quality has been the prime focus at NIIT. Most of the processes are ISO-9001 certified.
NIIT was the 12th company in the world to be assessed at Level 5 of SEI-CMM. NIIT’s
Content (Learning Material) Development facility is the first in the world to be assessed
at this highest maturity level. NIIT has strategic partnerships with companies such as
Computer Associates, IBM, Microsoft, Oracle, and Sun Microsystems.
About the Author
NITIN PANDEY works as a Consultant with NIIT. In his two years of work experience at
NIIT, he has authored several books, which include Commerce Server 2000
Configuration and Administration, Visual Studio .NET for Dummies, and C# Professional
Projects.
At NIIT, Nitin has been a SME (Subject Matter Expert) for seminars and WBTs
developed for Microsoft. He has also actively worked on all languages of the .NET
Framework, Visual Studio .NET, and .NET Enterprise Servers.

When he is not at work, Nitin enjoys reading and playing volleyball.

Introduction
ASP (Active Server Pages) has long been used as a Web programming language for
creating dynamic Web sites. ASP.NET is the next version of ASP 3.0, and it simplifies
the development of ASP applications for the Internet. ASP.NET forms an important
component of Microsoft’s .NET initiative.

With the release of Visual Studio .NET, creating ASP.NET applications has become very
simple. Visual Studio .NET provides all of the necessary tools and support for creating
ASP.NET applications. The easy-to-use interface of Visual Studio .NET coupled with the
power of ASP.NET makes programming Web applications an easy and interesting
experience.
ASP.NET Fast & Easy Web Development equips you with the necessary skills to create
ASP.NET applications. The characteristic visual emphasis of the book introduces ASP,
Visual Basic .NET, and ADO.NET concepts to novice developers. These concepts help
you get started with ASP.NET. Thereafter, the book delves into the advanced features of
ASP.NET, which include validating user input; developing user controls and composite
controls; reading XML data; creating XML Web services; managing, retrieving,

formatting, and displaying data using ADO.NET data objects; and creating and
implementing Web services.

Who Should Read This Book

Readers who are proficient in HTML and have some experience in Web programming
can best utilize this book. You will probably benefit more from the book if you have
worked on a scripting language before. After reading this book, you will be proficient in
ASP.NET and able to create high-performance dynamic Web sites. If this is your
expectation, then this book is certainly for you!

Although the book builds from very elementary concepts, it delves into fairly advanced
topics that provide valuable information to both novice and expert developers. If you
have already programmed in one or more of the .NET languages, you might want to skip
the first five chapters of the book, which lay the foundation for novice developers.

Added Advice to Make You a Pro
To benefit as much as possible from this book, you should download the code for the
sample application that is available at
http://www.premierpressbooks.com/downloads.asp . The sample application runs
through all of the important chapters of the book, with each chapter building on the
application in some way. Therefore, as you read the book, you will have a professional
application ready to use.
After you read this book, your next objective should be to create an application that is
similar to (or even more advanced than) the application developed in this book. This will
give you adequate hands -on practice in creating ASP.NET applications. You should also
regularly visit some of the useful Web sites on ASP.NET that I have listed in Appendix D,
“Online Resources for ASP.NET.” These Web sites provide the latest information on the
developments in ASP.NET.

Conventions Used in This Book

In the book, you will find several special elements that will make using this book easier.
§ Tips give you helpful information or shortcuts to accomplish a goal more

quickly or easily.
§ Notes provide you with additional information or background about a given

topic.
§ Cautions warn you of potential pitfalls or glitches in an application or

procedure.

Chapter 1: Introducing the .NET Initiative

Overview

ASP.NET is the follow-up to ASP 3.0. It is a key component of the .NET initiative. The
.NET initiative was launched by Microsoft to enable application providers to deliver
customer-oriented solutions. The foremost advantage of this initiative is the ability to
provide a customized solution that enables an application provider to deploy applications
that match the exact requirements of customers.

This chapter provides an introduction to the .NET initiative and the products and
technologies included in the initiative. Next, the chapter discusses the components of the
.NET Framework, which is a key enabler of the .NET initiative. Finally, the chapter
covers the types of applications that you can develop with ASP.NET and the role of

Visual Studio. NET in application development. Put briefly, in this chapter you’ll learn
about:
§ Products and technologies associated with the .NET initiative
§ Applications created using ASP.NET

Products and Technologies in the .NET Initiative

The .NET initiative was introduced in response to the shift in focus from desktop
computing to distributed computing. In distributed computing, a number of applications
are integrated to provide a solution. For example, if you need to display a list of the latest
books published by a number of publishers, you might implement a Web site that
retrieves details of new books from publishers.

With the focus on distributed computing, it became imperative to devise a mechanism by
which resources at remote locations could be integrated with the existing line-of-
business applications. The .NET initiative is the outcome of this necessity.

With the implementation of the .NET initiative, you can integrate your business
processes or automate your business transactions with business partners to enhance
customer experiences and improve business productivity.

The .NET initiative is being implemented by more than just one product. A number of
products and technologies that make up .NET enterprise servers, the .NET Framework,
and Visual Studio. NET implement the .NET initiative. In this section, you will learn about
the components of the .NET initiative and how ASP.NET fits into the initiative.

.NET Enterprise Servers

.NET enterprise servers are sets of servers that are used to build, host, and maintain

.NET applications. The .NET enterprise servers include Application Center 2000, BizTalk
Server 2002, Commerce Server 2002, Content Management Server 2001, Exchange
Server 2000, Host Integration Server 2000, Internet Security and Acceleration (ISA)
Server 2000, SharePoint Portal Server 2000, SQL Server 2000, and Windows 2000
Server.

Although all .NET enterprise servers are equally important in their domain, I will describe
only those servers that are related to ASP.NET applications or their deployment.

Commerce Server 2002

Commerce Server 2002 is a .NET enterprise server that is used to create scalable
business-to-business and business-to-consumer Web sites. With Commerce Server
2002, you can create highly personalized Web sites that can support personalized
advertisement targeting, a million user profi les, and an elaborate set of catalogs.

Tip You can use two languages for server-side scripting in ASP.NET—

Visual Basic .NET and Visual C#. You can even use a combination
of the two languages for the same application. For example, you
can create the default page of a Web site, Default.aspx, in Visual
Basic .NET and the menu of the Web site, Menu.aspx, in Visual C#.
See Chapter 4 for more information.

Note When this book was written, Commerce Server 2002 was in the

Beta 1 stage. The Retail Solution Site in the Beta 1 version is built
on ASP 3.0. However, this Solution Site might be built on
ASP.NET by the time the final version of Commerce Server 2002
is shipped.

BizTalk Server 2002
BizTalk Server 2002 offers a complete business-to-business solution for enterprises to
integrate their internal applications and securely connect to business partners on the
Internet. It includes extensive support for industry standards, such as XML (Extensible
Markup Language), SOAP (Simple Object Access Protocol), and PKI (Public Key
Infrastructure). By including support for these standards, BizTalk Server 2002 enables
you to exchange data with business partners in a platform-independent manner.

After you install BizTalk Server 2002, you can use the Microsoft BizTalk Server 2002
Toolkit for Microsoft .NET to develop BizTalk Server 2002 solutions using Visual Studio
.NET. The toolkit also includes comprehensive documentation about integrating Visual
Studio .NET with BizTalk Server 2002.

ISA Server 2000

Internet Security and Acceleration Server 2000, commonly referred to as ISA Server
2000, can be used by organizations to enable Internet access for their employees. ISA
Server 2000 includes several advanced features that enable you to block access to
restricted Web sites and monitor Internet usage.

By caching data, you can speed up data retrieval, because you don’t need to connect to
the main data source every time the request for data is made. By caching content of
frequently visited Web sites, a cache server can speed up Internet access. For example,
if the employees of an organization access http://www.micros oft.com frequently, ISA
Server can cache this Web site and retrieve site data from the cache when a user
requests it. Such a feature improves the response time for a request and optimizes
Internet usage.

Application Center 2000
Application Center 2000 is used to ensure high availability of Web sites. Availability of a
Web site is defined as the percentage of time that the site remains operational.
Application Center 2000 ensures high availability of Web sites by implementing NLB
(Network Load Balancing). In NLB, a cluster is created and a number of computers are
added to it. Each computer has an identical directory structure and is connected to a
network. A Web site is installed on each computer in the cluster, and the cluster is
exposed to the Internet by a single IP address.

When a user requests a resource, Application Center 2000 identifies which computer on
the network is least busy and directs the request to that computer. Similarly, if a
computer in the cluster stops responding, it is dynamically removed from the cluster, and
other computers in the cluster start processing the requests for the non-responding
computer.

SQL Server 2000

SQL Server includes the Enterprise Manager, which can be used to perform all the tasks
that were conventionally performed using SQL statements. Enterprise Manager has a
GUI (Graphical User Interface) that enables you to easily perform common tasks, such
as creating databases and tables and managing relationships between tables.
I will use SQL Server 2000 to create databases, tables, and stored procedures for
explaining the data management capabilities of Visual Studio .NET. For more information
about using SQL Server, see Chapter 4, “Visual Basic .NET Basics.”

.NET Framework
The .NET Framework provides the necessary classes and namespaces to create .NET
applications. The .NET Framework is made up of three components—the CLR (Common
Language Runtime), the class library, and ASP.NET. In this section, you will learn about
each of the three components of the .NET Framework.

Common Language Runtime

One of the foremost objectives in developing .NET languages is addressing the need for
cross-language interoperability. Therefore, a developer should be able to extend an
application that is developed in Visual C# (a .NET language) by using Visual Basic .NET.
To ensure interoperability between applications, Microsoft introduced the CLR. The CLR,
which is the common run-time across all .NET languages, is responsible for:

§ Efficient execution of code
§ Memory and thread management
§ Exception handling

The CLR includes several features that help to accomplish these tasks. For example, to
ensure that code is optimized, the .NET Framework compiles it as MSIL (Microsoft
Intermediate Language) code. The MSIL code can be readily interpreted when it is
executed. In addition to MSIL interpretation of code, I’ll cover the other two important
features of CLR—garbage collection and exception handling.

Garbage Collection

The CLR uses a garbage-collection mechanism to implement memory management.
When you declare objects in a program, these objects occupy memory space. When an
application is running, a number of objects might collect and occupy an inordinate
amount of memory space, and some of these objects might no longer be needed by the
application. In the earlier versions of programming languages, you had to explicitly
remove these objects from memory. However, in .NET the garbage collector
automatically removes objects that are no longer needed from the memory. This ensures
that your application executes optimally.

Exception Handling

In .NET, you can create an application in one language and debug it in another.
Consider an example. You have created one component of your application in Visual C#
and you are using it in another application that was developed using Visual Basic .NET.
If the component that you have developed in Visual C# throws an exception, you don’t
need to debug it in Visual C#; you can debug it in Visual Basic .NET.
Similarly, when an application throws an exception during execution, you can attach a
debugger to the application to debug it, irrespective of the language in which the
application was originally developed. See Chapter 20, “Debugging ASP.NET
Applications,” for more information about debugging and exception-handling techniques.

Class Library

The .NET Framework includes a comprehensive class library that provides the
necessary classes and interfaces to access system resources. By using the .NET
Framework class library, you can develop applications ranging from ones that run on a
stand-alone computer to ones that are deployed for access on the Internet and mobile
phones.
Classes of the .NET Framework class library are available in multiple namespaces .
Namespaces, in turn, are available in one or more assemblies . This section includes a
description of assemblies and namespaces.

Tip To develop mobile applications in Visual Studio .NET, you need to
download and install the Mobile Internet Toolkit. I’ll describe the
procedure for creating mobile applications in Chapter 16, “Building
Mobile Web Applications.”

Assemblies

Assemblies are the basic units of the .NET Framework. They provide the necessary
namespaces and types that can be used to create .NET applications. Assemblies are
useful in defining the scope of namespaces.
Assemblies can be one of two types—static or dynamic. Static assemblies are stored on
the hard disk. They typically include interfaces, classes, and the resources required to
implement the interfaces and classes. On the other hand, dynamic assemblies contain
classes that are run directly from memory and optionally stored on the hard disk after the
classes have been accessed.

Namespaces

Classes are organized in namespaces based on their functionality. For example, classes
pertaining to Web applications are available in the System.Web namespace. Similarly,
classes pertaining to debugging and tracing are available in the System.Diagnostics
namespace. When you create an application, you can import the namespaces that
correspond to the classes you want to use in your application. To differentiate between
namespaces and classes, the .NET Framework uses a . (dot) to separate the two.
Therefore, System.Console represents the Console class in the System namespace.

Note A namespace can include a number of namespaces within it. For
example, System.Diagnostics represents the Diagnostics
namespace within the System namespace.

ASP.NET

ASP.NET is a Web development technology. It includes a number of new features that
make it much different than ASP 3.0. Some of the new and important features of
ASP.NET include

§ Support for multiple programming languages. In ASP 3.0, all
server-side programming is done using VBScript. In ASP.NET, you
have the option to use Visual Basic .NET and Visual C# to develop
your applications. You can use both languages in the same application
as long as they are used in different Web pages.

§ Separation of HTML code from logic. In ASP.NET, you can write the
HTML code in the .aspx file and the code for programming logic in the
code-behind file (.aspx.vb if you use Visual Basic .NET or .aspx.cs if
you use Visual C#). The advantage of separating code from
programming logic is that you don’t need to worry about how the
output will be rendered in the Web page; Web designers can handle
that task.

§ Configuration of XML-based applications. You can configure
ASP.NET applications using the Web.config file, which is an XML-
based file. The advantage of using the Web.config fi le for storing
application configurations is that you can specify different configuration
settings for different subdirectories of an application. Therefore, Web
pages that should be viewed by authorized users only can be placed
in a separate directory from Web pages that can be viewed by
unauthenticated users. You can then apply different configuration
settings to pages in these subdirectories.

Note ASP 3.0 applications were configured using IIS (Internet
Information Server). In addition to configuring ASP.NET
applications using the Web.config file, you can also configure them
using IIS, if you choose. ASP.NET provides you with the flexibility
of using the Web.config file or IIS.

§ Enhanced debugging support. ASP.NET applications can be
debugged using the Visual Studio .NET debugger, which provides a
set of useful debugging tools that can help you detect problems in your
application code and rectify them with minimal effort. In addition to the

debugging tools provided by Visual Studio .NET, you can use the
Debug and Trace classes of the System.Diagnostics namespace to
debug your application.

These features of ASP.NET are only the tip of the iceberg. This book will allow you to
explore the other features of ASP.NET and gain hands-on expertise in the areas
mentioned.

Visual Studio .NET

Visual Studio .NET is the development suite for creating .NET applications. Using Visual
Studio .NET, you can create applications in Visual C++ .NET, Visual C#, and Visual
Basic .NET. Visual C# and Visual Basic .NET enable you to use the ASP.NET
technology for creating Web applications. However, if you need to create Web
applications in Visual C++ .NET, you need to use ATL Server.

Applications Created in ASP.NET

In ASP.NET, you primarily create two types of applications—ASP.NET Web applications
and ASP.NET Web services. The procedures for developing these applications aren’t
much different, especially when you use Visual Studio .NET. However, the
implementation of these applications differs significantly. In this section, I’ll discuss Web
applications and Web services and explain how the two, along with the other
components of the .NET initiative, meet the objectives of the .NET initiative.

ASP.NET Web Applications

Applications that you commonly browse on the Internet are ASP.NET Web applications.
For example, if you create a Web site in ASP.NET and host it on the Internet to be
accessed directly by users, your Web site is an ASP.NET Web application.
ASP.NET Web applications are made up of one or more Web forms. Web forms are
ASP.NET components that allow you to display the interface of the application and
interact with users to accept or display information. See Chapter 3, “Exploring the New
Features of ASP.NET,” for a detailed explanation of Web forms.

ASP.NET Web Services

ASP.NET Web services are applications that are exposed on the Internet. However,
users do not access these applications directly. Instead, they are accessed by other
applications through the Internet. The applications that access Web services use them to
display the applications to users. Thus, Web services are services provided to
applications for making data accessible.

Consider an online book retailer who stocks books published by 10 publishers. Suppose
the retailer requires an updated list of books that are being published and also needs to
send the details of all orders to publishers. Implementing this scenario using Web
applications is not easy.

Each publisher can host a Web service, which allows Web service clients to retrieve
catalogs of available books. The retailer can host a Web service client that implements
each Web service and displays the catalogs of books on the Web site. For a detailed
explanation of creating and implementing Web services, see Chapter 15, “Building
ASP.NET Web Services.”

Implementing the .NET Initiative

Up to this point, I have talked about the components of the .NET initiative separately.
The components of .NET Framework blend together to achieve the common objectives
for the .NET initiative, which were discussed in the “Products and Technologies in the
.NET Initiative” section of this chapter. Now you need to understand how these
components blend to offer a customized solution.

One of the foremost objectives of the .NET initiative is to provide a customized solution
that results in an enriching user experience. For example, if a user visits a Web site, the
Web site should be able to identify the user and load the user’s preferences. To enable
this functionality, Microsoft provides a set of services that are referred to as My Services.
A part of these services is Microsoft’s .NET Passport authentication service, which is the
default authentication service used by Microsoft Hotmail and MSN.

Commerce Server 2002, a .NET enterprise server, offers integration with Microsoft’s
.NET Passport authentication service. Therefore, you can create an ASP.NET
Commerce Server Web site using Visual Studio .NET and implement passport
authentication on the site. If a user who has logged on to the Passport authentication
service visits your Web site, he is automatically recognized on the Web site, and his
preferences are automatically loaded. You can also offer other customized services,
such as mobile access, to enable users to access your Web site through mobile
applications.

As you go on reading this book, you will learn that a solution similar to this one is easy to
create with ASP.NET.

Chapter 2: Installing and Configuring Visual
Studio .NET

Overview
To create ASP.NET applications, all you need is a text editor. However, that is not the
recommended way to create applications, and it is certainly not an easy one. When you
code ASP pages using a text editor such as Notepad, you need to code the HTML
(Hypertext Markup Language) and ASP.NET code without the help of any utility.

Instead of using a text editor, the easiest way to code ASP.NET applications is to use
Microsoft’s Visual Studio .NET development tool. Visual Studio .NET offers many
advantages over a text editor. For example, it uses color schemes for keywords and
values, which makes the code easier to read. It also includes an auto-complete feature
that completes common entries as you type the code. You will discover many other
advantages of using Visual Studio .NET to create ASP.NET applications as you proceed
with this book. In this chapter, you’ll learn how to:
§ Install Visual Studio .NET
§ Configure Visual Studio .NET

Installing Visual Studio .NET

To install Visual Studio .NET, you first need to ensure that your computer meets the
necessary hardware and software requirements. Next, you need to install prerequisite
software, which is bundled in the Visual Studio .NET installation package. Finally, you
can install Visual Studio .NET.

This section covers the hardware and software requirements for installing Visual Studio.
NET, as well as the installation steps.

Hardware and Software Requirements

Visual Studio .NET includes the Professional, Enterprise Developer, Enterprise Architect,
and Academic editions. The components that are shipped with Visual Studio .NET vary
depending on the edition that you purchase. For example, the Enterprise Architect
edition includes Visio-based modeling tools that are not included in the Enterprise
Developer version of Visual Studio .NET. Regardless of the edition of Visual Studio
.NET, the hardware and software requirements are more or less same.

Hardware Requirements for Visual Studio .NET

The hardware requirements for installing Visual Studio .NET are
§ 600 MHz Pentium II microprocessor
§ 3.5 GB of available hard disk space
§ 256 MB of RAM
§ 52X CD-ROM drive
§ Internet connection (to check for product updates)

Software Requirements for Visual Studio .NET

The software requirements for installing Visual Studio .NET are
§ Windows 2000 (Server or Professional) or Windows XP Professional

§ Windows .NET Server
§ IIS (Internet Information Server) 5.0 or later

Note Although Visual Studio .NET also can run on Windows NT 4.0
Server or Windows NT Workstation, these platforms do not
support ASP.NET. Therefore, you cannot use these platforms to
run ASP.NET applications.

Aside from the software requirements, Visual Studio .NET also requires updated
versions of several Windows components, which are listed in the following section,
“Installing Windows Update Components.” However, if the updated versions are not
available on your computer, they will be installed when you install Visual Studio .NET.

Having examined the requirements for installing Visual Studio .NET, you can proceed to
the installation of the Windows components, which will update your system as a
preliminary step to installing Visual Studio .NET.

Installing Windows Update Components

If you have not applied patches for Windows components that are installed on your
computer, the setup program will install the following updated versions of the
components.

§ Windows 2000 Server Service Pack 2
§ Microsoft FrontPage 2000 Server Extensions Service Release 1.2
§ Microsoft Windows Installer 2.0
§ Microsoft Windows Management Infrastructure
§ Microsoft FrontPage 2000 Web Extensions Client
§ Setup Runtime Files
§ Microsoft Internet Explorer 6.0 and Internet Tools
§ Microsoft Data Access Components 2.7
§ Microsoft Jet 4.0 Service Pack 3
§ Microsoft .NET Framework

Note You do not need to determine which of these components you
must install. The setup program automatically determines the
configuration of your computer and installs the necessary software
updates.

If you have purchased the CD-ROM package of Visual Studio .NET, the Windows
Update components will be available on the last CD-ROM that is included in the
package. If you have purchased the DVD package of Visual Studio .NET, Windows
update components are available on the DVD-ROM that comes in the package. In either
case, you will need to run the Setup.exe file from the CD-ROM or DVD-ROM.

To install Windows component updates, follow these steps.
1. Double-click on the Setup.exe file in the installation package. The Microsoft Visual
Studio .NET Setup dialog box will open.
2. Click on the Windows Component Update option. The End User License Agreement
screen will appear.

3. Click on the I Accept the Agreement radio button. The option will be selected.
4. Click on the Continue link. The Windows Component Update screen will appear,
listing the Windows components that need to be updated.

5. Click on the Continue link. The Optional Automatic Log On screen will appear.

6. Specify log-on information to enable the computer to log you on every time your
computer reboots during the installation process. To specify log-on information, click on
the Automatically Log On check box. The option will be selected.

7. Type your Windows password in the Password and Confirm Password text boxes and
click on Install Now! The setup program will install Visual Studio .NET on your computer
and automatically restart your computer when required. When the installation of updated
Windows components is complete, the Congratulations screen will appear.

8. Click on Done. The Microsoft Visual Studio .NET Setup screen, which was the first
screen to appear when you started the installation program, will reappear.

You have successfully completed the installation of Windows Update components. You
can now proceed to installing Visual Studio .NET.

Visual Studio .NET Installation

To install Visual Studio .NET, simply start the setup program from where you left it after
installing Windows Update components. Follow these steps to install Visual Studio .NET.

1. Double-click on the Setup.exe file on the DVD-ROM or the first CD-ROM that came
with the installation package. The Microsoft Visual Studio .NET Setup dialog box will
open.
2. Click on the Visual Studio .NET option. The Microsoft Visual Studio .NET Setup Start
page will appear.

3. Click on the I Accept the Agreement option to accept the license agreement. The
option will be selected.
4. Specify the product key in the Product Key fields and click on Continue. The Microsoft
Visual Studio .NET Setup Options page will appear.
5. The default location where Visual Studio .NET will be installed is given in the Local
Path field. If you need to change this location, click on the Ellipsis button next to the
Local Path field. The Select a Destination Folder dialog box will open.

6. Type the location where you want to install Visual Studio .NET in the Folder Path text
box and click on OK. The location that you selected will be displayed in the Local Path
field of the Microsoft Visual Studio .NET Setup Options page.

7. Click on Install Now! When the installation is complete, the Setup is Complete screen
will appear.
8. Click on Done to close the screen and complete the Visual Studio .NET setup. You will
be returned to the Microsoft Visual Studio .NET Setup screen. The Service Releases link
on this screen will be enabled, so you can check for software updates.

Checking for Product Upgrades

To check for updates to Visual Studio .NET, follow these steps.
1. Click on the Service Releases link on the Microsoft Visual Studio .NET Setup screen.
The Service Releases dialog box will open.
2. Click on the Check for Service Releases on the Internet link to check for Visual Studio
.NET updates on the Internet. The setup program will check for software updates on the
Internet and notify you about whether or not updat es are available.

3. Click on OK to close the Service Releases dialog box.

Configuring Visual Studio .NET

Visual Studio .NET is highly customizable, which can simplify your work. The toolbars
and windows in Visual Studio .NET can be conveniently positioned. You can also change
the default code coloration scheme and the font size that is used for displaying code.

The objective of this section is to get you accustomed to the interface of Visual Studio
.NET. In this section, you will read about the windows available in Visual Studio .NET
and their purposes. You will also learn how to customize the Visual Studio .NET
interface.

Visual Studio .NET Windows

Visual Studio .NET includes a number of windows that display information about your
project and provide access to tools and resources in Visual Studio .NET and on the
computer. For example, the Server Explorer provides access to the SQL Server
databases, event logs, and performance counters that are on the local computer. The
Toolbox enables you to access the clipboard and provides controls that you can add to
an ASP.NET page. In this section, I will list the windows provided by Visual Studio .NET,
their utilities, and how you can access them.

Server Explorer

The Server Explorer is used to access the resources on the local computer. To open the
Server Explorer, click on the View menu and select Server Explorer.

One of the most common uses of the Server Explorer is for creating connections to SQL
Server databases and tables. To create a connection to a SQL Server database, you
simply drag the database from the Server Explorer to your Web form. To learn more
about this technique, see Chapter 10, “Managing Data from ASP.NET Applications.”

You can restore the original state of the window by clicking on the Auto Hide button
again.

Toolbox

The Toolbox window, commonly referred to as the Toolbox, includes Web forms and
HTML controls that you can add to your Web forms. It also includes controls that are
used to interact with databases. To access the Toolbox, click on the View menu and
select Toolbox.

Document Outline

Properties

As you will see, the Properties window is the most frequently used window in an
application.

Dynamic Help

The Dynamic Help window is very useful when you are not sure of the definition of a
function and you want to look it up in the documentation of Visual Studio .NET.

Solution Explorer

The Solution Explorer displays the details of references to other projects and Web forms
that you have added to your application. You can also add references to projects and
add new forms and graphics to your application using the Solution Explorer. To open the
Solution Explorer, click on the View menu and select Solution Explorer.

Class View

The Class View window shows the classes and namespaces that are defined in your
application. You can use this window as a reference to the namespaces, classes, and
functions that are available for your application.

Resource View

The Resource View window displays the resources that you have added to your
application. This window is not really useful in ASP.NET applications. However, in Visual
C++ .NET applications, you can use the Resource View window to view the bitmaps,
dialog boxes, menus, and string tables that you have added to your application.

Customizing Visual Studio .NET

You use the Options dialog box to customize the Visual Studio .NET development
environment. The Options dialog box includes several options that allow you to configure
the font and color of the user interface elements and the startup settings of Visual Studio
.NET. To access the Options dialog box, follow these steps.
1. Click on Tools. The Tools menu will appear.
2. Click on Options. The Options dialog box will open.
3. Click on the Environment section. The property pages in the Environment section will
appear.

4. Click on the General property page. The properties in the General property page will
appear.
5. You can change one or more properties in the General property page. For example, to
show the Open Project dialog box every time you open Visual Studio .NET, click on the
At Startup drop-down list. The contents of the At Startup list will appear.

6. Click on Show Open Project Dialog Box option. The option will be selected.

7. You can configure many other properties of Visual Studio .NET using the Options
dialog box. For example, click on the Auto-Load Changes check box in the Documents
property page to load changes to the .aspx files when these files are changed outside of
the Visual Studio .NET development environment.
8. You can also change the default font size and the color that is used to display code if
you have difficulty reading small fonts. To change the font size, click on the Fonts and
Colors property page. The property page will be displayed.
9. Click on the Size drop-down list. The available font sizes will appear.

10. Click on 11. The font size for the Code Editor window will be set to 11.

Tip You can also change the color scheme that is used for code

coloration. For example, you can select a different color for
breakpoints if the existing color is not legible. However, to ensure
optimal clarity of code, I recommend that you retain the default color
scheme.

11. After making the required changes in the Options dialog box, click on OK. The
Options dialog box will close and the changes that you made will be saved.

You have learned the basics of configuring the Visual Studio .NET environment. The
easiest way to learn to use advanced features for configuring the environment is to
practice using these features. You will have ample opportunity to gain hands -on
expertise in Visual Studio .NET as you read this book.

Chapter 3: Exploring the New Features of
ASP.NET

Overview

You can use Visual Studio .NET to create different types of Web applications. The Web
applications that you can create include simple Web sites containing simple HTML
pages, Web services that provi de access to data, and complex business-to-business
applications that integrate one or more business processes across organizations.
ASP.NET is the technology that makes creating all of these applications possible.

This chapter introduces you to the features and advantages of ASP.NET. In this chapter,
you’ll learn how to:
§ Get started with the basics of ASP.NET
§ Use Web forms

Getting Started with ASP.NET

ASP.NET is a compiled programming environment that uses the .NET Framework to
create Web applications. Thus, all of the features of the .NET platform are available to an
ASP.NET application.
ASP.NET is flexible in that it allows developers to write applications in any language
offered by the .NET Framework, such as Visual Basic .NET and Visual C#. ASP.NET
also has a powerful event-driven architecture that is based on the .NET CLR
environment. See Chapter 1, “Introducing the .NET Initiative,” for more information on
the CLR. To get started with ASP.NET, you need to understand its architecture.

Understanding the ASP.NET Application Architecture

An ASP.NET page is composed of three elements—directives, layout, and code.
Explanations of these elements follow.

§ Directives. You can use directives to insert messages for instructing the
compiler and browser when they process a page. Directives specify the
language used, indicate the transaction support required, and specify the
page to which a user should be redirected in case of an error in the page
that is being processed.

§ Layout. The layout of a page determines which HTML elements are

present on a Web page and how they should be arranged. You can write
the HTML code for defining the layout or drag controls from the Toolbox
to the form.

§ Code. The code defines the classes, functions, and controls that are
shared by multiple pages of an application or by different applications on
the same server.

Web applications created in ASP.NET are composed of many files with different file
names and extensions. This is because ASP.NET stores code for the user interface and
the program logic in different files. Code separation ensures that the application is well
structured and performs optimally.

ASP.NET files by default have an .aspx or .ascx extension. The .aspx files represent the
Web forms, and the .ascx files represent the user controls created for a Web application.
In addition to these files, there are other files that contain the code for an application.
The extensions of the code files depend on the programming language used. For
example, a C# file would have the extension .aspx.cs.

Examining the Features of ASP.NET

ASP.NET allows developers to create Web applications in the programming language of
their choice. It also offers a number of other features that make creating Web
applications easy. The following sections briefly discuss some of the important features
of ASP.NET.

Common Language Runtime

ASP.NET runs in the context of the .NET CLR. A CLR provides a programming interface
between the .NET Framework and the programming languages available for the .NET
platform. The CLR simplifies application development and provides a robust and secure
execution environment.

By being a component of the .NET Framework, ASP.NET benefits from the .NET
Framework’s features, such as cross-language integration and exception handling,
automatic memory management, and enhanced deployment support.

Caching

Caching is a technique for storing frequently used data in an application. By caching
data, you can improve the performance of your Web application, because retrieving data
stored within an application is faster than retrieving data from any other location, such as
a database. ASP.NET provides three types of caching support for Web applications.

§ Page-output caching. Page-output caching is a powerful technique
that increases request/response throughput by caching the content
generated from dynamic pages. This technique is useful when the
contents of an entire page can be cached.

§ Fragment caching. Fragment caching is used to cache portions of a
response generated by a request. This kind of caching is helpful when
it is not practical to cache an entire page.

§ Data caching. Data caching is used to cache arbitrary objects
programmatically. To support this type of caching, ASP.NET provides
a cache engine that allows programmers to easily retain data across
requests.

For more information on implementing these types of caching, see Chapter 18, “Caching
in ASP.NET Applications.”

Debugging and Tracing
ASP.NET provides a rich debugging environment. It provides cross-language and cross-
computer debugging support for your applications. ASP.NET is compiled, which enables
you to debug ASP.NET applications as you would debug any other application created in
Visual Studio .NET. To debug ASP.NET applications, you can use the Visual Studio
.NET debugger. See Chapter 20, “Debugging ASP.NET Applications,” for more
information on using the Visual Studio .NET debugger.
ASP.NET also introduces a new feature, known as tracing, which allows you to write
debug statements in the code. Even when you port the code to the production
environment, you can retain the debug statements because these statements are not
executed when tracing is turned off. Tracing allows you to write variables or structures in
a page, assert whether a condition is met, or simply trace through the execution path of
your page or application. See Chapter 19, “Tracing ASP.NET Applications,” for more
information on tracing applications.

Session and Application State Management

ASP.NET provides easy-to-use session and application state management. Session
management enables you to track which user is requesting a resource on your Web
application. It also enables you to load the profile of a user when the user logs on to your
Web application. A session is restricted to a logical application and defines the context in
which a user communicates with a server.

Application state management enables you to track the use of application variables in an
ASP.NET application. For example, consider a situation in which you have stored the
connection strings to data sources in text files. When the application is executed for the
first time, you can retrieve the connection strings from text files and store them in
application variables. These connection strings can then be requested by all pages of the
Web application.
See Chapter 17, “Managing State in ASP.NET Applications,” for more information on
managing session and application states.

File-Based Application Configuration

ASP.NET uses XML-based files to store configuration data pertaining to an application.
The configuration of an application determines the authentication mode and the list of
users who are allowed to access the Web application.

User and Composite Controls
Developers can create their own custom and reusable controls called user controls. User
controls are self-contained and can be placed on a Web page just like any other controls.
These controls can also have a set of their own attributes.
Composite controls are created by combining existing controls and rendering them as a
single control at run time. These controls reuse the functionality of the existing controls.
See Chapter 12, “Creating a User Control in ASP.NET,” and Chapter 13, “Creating a
Composite Control in ASP.NET,” for more information on user and composite controls.

Now that I’ve explained the features of ASP.NET, I’ll discuss some of its advantages.

Advantages of ASP.NET

ASP.NET provides several advantages that enable you to develop and manage your
Web applications efficiently. Of these advantages, the most important ones are support
for multiple scripting languages, integration with Visual Studio .NET, and the ability to
use server controls. These advantages, as well as a few others, are explained below.

§ Compiled execution. The code of an ASP.NET page is compiled and
cached on the server when the page is requested for the first time. This
helps speed up execution of ASP.NET pages.

§ Multiple language support. In ASP 3.0, server-side scripting was done
using VBScript. However, in ASP.NET developers have the option to use
either Visual Basic .NET or Visual C#. You can also use a combination of
both languages to develop your application, as long as you use only one
programming language on a page.

§ Extensive support by Visual Studio .NET. ASP.NET applications can
be developed in Visual Studio .NET, which allows WYSIWYG (What You
See Is What You Get) editing for Web forms and provides drag-and-drop
support to enable you to place controls on Web forms.

§ Server controls. The .NET Framework provides server controls that
simplify the task of creating Web pages. Server controls perform tasks
that include validating form information, displaying data from a database,
and displaying complex user interface elements such as interactive
calendars.

§ Improved security. ASP.NET provides different types of authentication
mechanisms for Web applications. Developers can select a custom
authentication mechanism and secure their Web applications.

Introducing Web Forms

Web forms are a part of the ASP.NET technology used to create programmable Web
pages. Web forms can present information to users who access the Web application
using a Web browser. The code in a Web form enables you to process information
submitted by the users on the Web server.

A Web form is composed of two components—the visual elements and the code. Visual
elements include controls and text, and the code refers to the program logic. Both of
these components are stored in separate files. By default, the visual elements are stored
in an .aspx file, and the code is stored in the code-behind file (.aspx.vb or .aspx.cs).
However, when you create a Web form, you have the option to create the visual
elements and code in the same file, as it was done in ASP 3.0.

A Web form utilizes the Page class to display data to users. The Page class includes
several directives that are used to configure the Web form. The Page class and its
directives are explained in the following sections.

Understanding the Page Class

A Web form contains different files for visual elements and code. However, when you
compile a Web form, these files act as a single unit. While compiling, ASP.NET parses
the Web form and its code, generates a new class dynamically, and then compiles the
new class. The dynamically generated class is derived from the Page class of ASP.NET.

Put in simple terms, the Page class represents a single .aspx file that is requested from a
server on which the ASP.NET Web application is hosted. The .aspx files are compiled at
run time as Page objects and are cached in server memory.

Understanding Page Directives

Page directives specify the settings used by the page and the user control compiler
when they process ASP.NET Web-form pages (.aspx) and user control (.ascx) files.
Page directives can be located anywhere in an .aspx or .ascx file, and each directive can
contain one or more attributes (paired with values) that are specific to that directive.

Two important directives that are used on a page are the @ Page and @ Control
directives. These directives are used to define a Web form and a user control,
respectively. The next two sections describe these directives in detail.

Working with the @ Page Directive

The @ Page directive defines page-specific attributes that are used by the ASP.NET
page parser and compiler to determine certain attributes associated with a page, such as
the scripting language used on the page. This directive can be used only in .aspx files.
The .aspx file is compiled dynamically when a user browses the page. Therefore, the
class associated with a Web form is also determined using the @ Page directive.

The syntax of the @ Page directive is

<%@ Page attribute="value" [attribute="value"] %>

Some attributes of the @ Page directive include
§ ClassName. The ClassName attribute specifies the name of the class

that will be compiled when the Web form is requested.
§ CodePage . The CodePage attribute indicates the name of the code-

behind file that is associated with the Web form.
§ Debug. The Debug attribute indicates whether the page should be

compiled with debug symbols.
§ Description. The Description attribute provides a brief description of

the Web form.
§ EnableSessionState . The EnableSessionState attribute specifies

whether session state is enabled for a Web form.
§ EnableViewState. The EnableViewState attribute indicates whether

view state is maintained across page requests.

Working with the @ Control Directive

The @ Control directive defines control-specific attributes used by the ASP.NET page
parser and compiler. This directive can only be used in .ascx files, which signify user
controls.

The syntax of the @ Control directive is

<%@Control attribute="value" [attribute="value"] %>

Some attributes of the directive include
§ ClassName. The ClassName attribute specifies the name of the class

that will be compiled when the user control is requested.

§ CompilerOptions. The CompilerOptions attribute specifies compiler
switches that are used to compile the user control.

§ Debug. The Debug attribute indicates whether the page should be
compiled with debug symbols.

§ Description. The Description attribute provides a brief description of
the user control.

§ EnableViewState. The EnableViewState attribute indicates whether
view state for the user control is maintained across requests.

Understanding Postbacks and Round Trips
Consider a scenario in which a Web form is requested by a browser. A form is displayed
on the browser, and the user interacts with the controls on the form, which causes the
form to post back to the server. (The form must be posted to the server because all
processing must occur on the server.) The form is processed at the server and returned
to the browser. This sequence of events is referred to as a round trip. Therefore, actions
such as clicking a button result in a round trip.

Considering this scenario, Web-form pages are recreated with every round trip. As soon
as the server finishes processing and sending the page to the browser, it discards the
page information.

The freeing of server resources after each request can help Web applications scale and
support hundreds or thousands of simultaneous users. The next time the page is posted,
the server starts over in creating and processing it, which is primarily due to the transfer
protocol (HTTP) being a stateless protocol. This results in the values of a page’s
variables and controls being lost between multiple requests.

However, in some cases you might need to store data between round trips. ASP.NET
provides an EnableViewState property for controls. If you set this property to True, the
information specified by a user on the Web form is stored between round trips. This
process is referred to as saving the view state of the control; it is done using a hidden
field on the form itself.

Understanding Cookies

A cookie represents data that is stored either in a text file on the client or in memory in
the client’s browser session. Cookies can be temporary (with specific expiration times
and dates) or persistent.

You can use cookies to store information about a particular client, session, or
application. The cookies are saved on the client device; when the browser requests a
page, it sends information stored in the cookie along with the request. The server can
read the cookie and extract a value to determine the user’s credentials or user
preferences.

Understanding Query Strings

A query string is the part of the information that is appended to the address of a Web
form. A typical query string might be

http://www.querysample.com/querystring.aspx?username=john
In this Web-form address, the query string starts with the question mark and includes an
attribute-value pair—username=john, in which username is the key and john is its value.

Query strings provide a simple but limited way of maintaining some state information.
They also provide an easy way to submit information from one page to another. For
example, you can pass a product ID from one page to another, where the product ID
might be used to retrieve product details on the second page.

Query strings have a few drawbacks. Most browsers and client devices impose a 255-
character limit on the length of the URL. Also, the query values are exposed to the

Internet via the URL. Therefore, query strings are not a secure and convenient way to
post data between Web forms in a Web application.

Another drawback of query strings is that to make query string values available during
page processing, you must submit the page using an HTTP get method. You cannot take
advantage of a query string if a page is processed in response to an HTTP post method.

The concepts discussed in this chapter provided an introduction to the major features of
ASP.NET. In the remaining chapters of the book, you will learn about the implementation
of each feature in detail.

Chapter 4: Visual Basic .NET Basics

Overview
In Chapter 3, “Exploring the New Features of ASP.NET,” you were introduced to some
new features of ASP.NET. Before you begin creating your ASP.NET applications, you
should get acquainted with the basics of Visual Basic .NET, because it is the language
you will use to create your ASP.NET applications. This chapter will take you through
some basic Visual Basic. NET concepts related to data types, variables, arrays, decision
structures, and looping constructs. Specifically, in this chapter, you’ll learn how to:
§ Use variables and data types
§ Work with arrays
§ Use decision structures and loops

An Introduction to Visual Basic .NET

Visual Basic .NET is one of the programming languages of .NET Framework. Visual
Basic .NET is the latest version of Visual Basic, and it introduces many new features.
Some of the new features of Visual Basic .NET follow.
§ Object-oriented language . Visual Basic .NET is an object-oriented language

and thus supports abstraction, encapsulation, inheritance, and
polymorphism.

§ Multi-threaded. Visual Basic .NET supports multi-threading and thus allows
you to create multi-threaded and scalable applications.

§ Structured exception handling. Visual Basic .NET supports structured
exception handling by providing Try and Catch statements.

§ CLS-compliant. Visual Basic .NET is compliant with CLS (Common
Language Specification), which means that Visual Basic .NET can use any
class, object, or component created in any other CLS-compliant language,
and vice versa.

Using Variables and Data Types

Consider a simple application that accepts data from a user, performs some operations
on this data, and displays the result. This pattern is common with most applications that
you create, regardless of the programming language. In other words, most applications
deal with data in one way or another. This is where variables and data types come into
the picture.
A variable is a temporary memory location that is assigned a name and can hold a
specific type of data. Visual Basic .NET provides a number of data types that can be
used to specify the type of data. Some of the data types include Integer, String, Long,
and Double. Table 4.1 lists some of the commonly used data types in Visual Basic .NET.
Table 4.1: Commonly Used Data Types in Visual Basic .NET

Data Type Type of
Data Stored

Integer Numeric data
in the range
of –
2,147,483,64
8 to
2,147,483,64
7

Long Numeric data
that exceeds
the range
supported by
the Integer
data type

Short A smaller
range of
numeric data
(between –
32,678 and
32,767)

Single Single-
precision
floating-point
numbers

Double Large
floating-point
numbers

Decimal Very large
floating-point
numbers

Boolean Boolean
values, which
are either
True or False

String Alphanumeric
data (text
and
numbers)

Object Data of any
data type

Char A single
character

DateTime Date- and
time-related
data

Declaring Variables

To declare a variable in Visual Basic .NET, you use the Dim statement. The syntax for
declaring a variable is

Dim VarName [As Type]

In this syntax, VarName is the name of the variable and As Type is an optional clause
that specifies the data type of the variable being declared. Take a look at the following
statements.

Dim MyNumber As Integer

Dim MyString As String

The first statement declares an Integer variable by the name MyNumber; the second
statement declares a String variable by the name MyString.

You can also declare several variables at the same time, using a single Dim statement.

Dim MyNumber1, MyNumber2, MyNumber3 As Integer

This statement declares three Integer variables using a single Dim statement.

I will now discuss some ground rules for naming variables, because it is very important to
give meaningful names to variables. There are various naming conventions used by
programmers around the world. Although it is not necessary to follow a naming
convention, following one does make coding easier and is considered good
programming practice.
One of the most common naming conventions is to include the data type in the name of
the variable. For example, an Integer variable can be declared as intResult. Another
common practice is to capitalize the first character of each word in a variable name if it
has multiple words. For example, intNumOfItems is an Integer variable whose name
consists of three words—Num, Of, and Items. I have capitalized the three words in the
name of the variable to make it easier to read. Yet another convention is to not use the
data type in the name of the variable (for example, NumOfItems). Regardless of the
convention used, here are some rules that you should follow.

§ A variable name cannot contain spaces, periods, or identifier type
characters.

§ A variable name must begin with an alphanumeric character.
§ A variable name cannot contain more than 255 characters.

Visual Basic .NET allows you to use identifier type characters while declaring variables.
As the name suggests, identifier type characters specify the data type of the variable. To
better understand this concept, consider the following statement.

Dim MyNumber%
This statement declares an Integer variable named MyNumber. Note the % character,
which is the identifier type character for declaring Integer variables. Table 4.2 lists the
various identifier type characters that you can use.

Table 4.2: Identifier Type Characters in Visual Basic .NET

Data Type Identifier
Type
Charact
er

Integer %

Single !

Long &

Double #

Decimal @

String $

Initializing Variables

When you declare a variable, it contains a value by default. For example, an Integer
variable contains a value of 0. You can also initialize a variable, as shown here.

Dim MyNumber As Integer

MyNumber=100

Instead of using the preceding two statements, you can use a single statement, as
shown here.

Dim MyNumber As Integer = 100

Using the Option Explicit Statement

In the previous sections, you looked at how to declare and initialize variables. Now, take
a look at a situation in which you don’t have to declare variables and you can start using
them in your program. Visual Basic .NET supports this feature. In other words, you don’t
have to use the Dim statement at all.
In Visual Basic .NET, variable declarations can be categorized as explicit and implicit.
Explicit declaration means that you declare a variable before using it; implicit declaration
refers to using a variable without declaring it. However, implicit declarations can lead to
unpredictable program results and can pose a problem while debugging. For example,
you could misspell the name of an implicitly declared variable at some point in the code.
To avoid the problems that can arise from implicit variable declaration, you should
declare variables explicitly. To enforce explicit declaration, use the Option Explicit
statement.

Option Explicit [On | Off]

Working with Arrays
In the last section, you learned to declare and initialize variables of different data types.
Consider an application where you need to store the names of 100 employees. To store
names of 100 employees, you would need to use 100 variables—one for every
employee—which would be very tedious and time-consuming. However, arrays provide
an easy solution. An array is a collection of variables of the same data type that can hold
several values. Each variable in an array is called an array element and is identified by
its position in the array. This position is called an index number, and it helps to
distinguish one array element from another.

Declaring an Array

Just as you declare other variables, you also need to declare arrays. The declaration of
arrays is not much different from the declaration of a variable. The syntax for declaring
an array is

Dim ArrayName (NumOfElements) [As DataType]

In the preceding line of code, ArrayName is the name of the array. NumOfElements is
the number of elements the array can hold, and DataType is the data type of the array
elements. Consider the following statement.

Dim MyArray(5) As Integer

This statement declares an Integer array named MyArray, which can hold six elements.
Note MyArray can hold six elements because arrays are zero-based.

Therefore, the index number of the first element is 0 and the index
number of the last element is 5, making a total of six elements.

Initializing an Array

To initialize an array, you need to assign values at each index of the array. After you
declare an array, use the following syntax to initialize it.

Dim MyArray(2) As String

MyArray(0)="Mary Jones"

MyArray(1)="Paul Adams"

MyArray(2)="Henry John"

The first statement in the code declares an array named MyArray. The next three
statements initialize each element of the array. These lines of code can also be written
as:

Dim MyArray() As String = {"Mary Jones","Paul Adams","Henry John"}

You use the index number to retrieve the values from an array. In the case of MyArray,
which holds three String values, you would use the following statement to retrieve the
value stored at index position 1.

Dim MyString As String

MyString=MyArray(1)

After the execution of the code statements, MyString contains the value “Paul Adams,”
which is stored at index number 1 in MyArray.

Working with Multi-Dimensional Arrays
In Visual Basic .NET, you can also declare multi-dimensional arrays. As the name
suggests, multi-dimensional arrays are arrays with more than one dimension. Visual
Basic .NET supports up to 32 dimensions in an array. However, most often you will use
two- or three-dimensional arrays. The syntax to declare a two-dimensional array is

Dim MyArray(3,4) As String

Here, MyArray is a two-dimensional array that can hold up to 20 elements. 20 is the
product of four (the size of the first dimension plus one) multiplied by 5 (the size of the
second dimension plus one).

Understanding Dynamic Arrays
There might be times when you do not know how large an array should be. For example,
suppose you needed to store the training details of each employee in an organization.
You couldn’t specify a size for this array because the number of trainings attended by
each employee will vary. For such an application, you could use dynamic arrays. As the
name suggests, a dynamic array is an array whose size changes dynamically. You can
change the size of a dynamic array during the execution of the program.

The following code sample shows the declaration of a dynamic array.

Dim MyArray() As String

Here, a String array named MyArray is declared. Note that the size of the array is not
specified; it can change at run time. To resize an array, you use the ReDim statement.
This syntax of this statement is

ReDim MyArray(5)

This example was for a one-dimensional array; you can also resize multi-dimensional
arrays. However, you cannot change the number of dimensions for a dynamic multi-
dimensional array. To better understand this concept, consider the following statements.

Dim MyArray(1,2) As String

ReDim MyArray(3,4)

The first statement declares a two-dimensional array with the dimensions 1, 2. The
second statement changes the first dimension from 1 to 3 and the second dimension
from 2 to 4.

When you use a ReDim statement, an array loses all of its existing data, and the
elements of the resized array are initialized with the default value of their data type. To
prevent data loss, you can use the Preserve keyword. The syntax for using this keyword
is

ReDim Preserve ArrayName (NumOfElements)

Here, ArrayName is the name of the array that you want to resize. The Preserve
keyword can also be used for multi-dimensional arrays. However, you can only resize
the last dimension in a multi-dimensional array. To better understand this concept,
consider the following statements.

Dim MyArray(2,3) As Integer

ReDim Preserve MyArray(3,4)

This statement will generate an error because you are trying to change the dimensions
of the array and preserve the existing data. However, you can use the following
statement to resize the last dimension in a multi-dimensional array.

ReDim Preserve MyArray(2,4)

Here only the last dimension is resized, and the existing data is preserved.

Now that you have learned about arrays, you’ll want to learn about the next important
element of programming—decision structures.

Working with Decision Structures
Decision structures enable you to make decisions based on a programming condition. In
other words, they ensure execution of a set of statements based on the result of a
condition. In this section, I’ll discuss two decision structures—If…Then…Else and
Select…Case.

Using If…Then…Else Statements

The If…Then…Else statement is the most commonly used decision structure. It is used
to execute one or more statements based on a condition. The condition used in the
If…Then…Else statement is a Boolean expression that returns either True or False. The
syntax for the If…Then…Else statement is

If Condition(s) Then

 Statement(s)

[Else

 Statement(s)]

End If

Here, Condition(s) is the expression to be evaluated. If this expression returns True, the
Statement(s) following Then are executed. If this expression returns False, the

Statement(s) following Else are executed. End If marks the end of an If…Then…Else
statement.

Note the If…Then…Else statement in the code. This statement checks for the value of
the WeekDay variable. If the value of this variable is 0, the expression in the If statement
returns True, and the statements following the If statement are executed. In this case,
the label displays the text “Sunny sunny Sunday!!” If the expression in the If statement
returns False, the statements following the Else statement are executed. In this case, the
label displays the text “Not a Sunday.”

There is another form of the If…Then…Else statement in which you can check for
multiple conditions. The syntax for this form of the statement follows.

If Condition1(s) Then

 Statement1(s)

[ElseIf Condition2(s) Then

 Statement2(s)

Else

 Statement3(s)]

End If

In the preceding syntax, Condition1(s) is evaluated. If it is True, Statement1(s) is
executed. If it is False, the control moves to the ElseIf statement, and Condition2(s) is
evaluated. If Condition2(s) is True, Statement2(s) is executed; otherwise, Statement3(s)
(which follows the Else clause) is executed.

In Visual Basic .NET, you can use the logical operators And, AndAlso, Or, OrElse, and
Not. Out of these, And, Or, and Not are self-explanatory. The AndAlso operator checks
for the first condition in the expression. If the condition evaluates as False, the AndAlso
operator returns False; otherwise, a logical And operation is performed on the two
conditions.

In the case of an OrElse operator, if the first condition evaluates to True, the OrElse
operator returns True. Otherwise, a logical Or operation is performed on the two
conditions.

Using Select…Case Statements

The Select…Case statement is another decision structure. The Select…Case statement
checks for a condition and then executes a set of statements based on the result of that
condition. A Select…Case statement is preferred when you need to check for multiple
values of an expression. The syntax for the statement is

Select Case Expression

 Case ValueList

 Statement1(s)

 [Case Else

 Statement2(s)]

End Select

Here, the Expression is evaluated, and the result is compared against the values
specified in ValueList of the Case statements. If the result matches any of the values
specified in the Case statement, the statements following that Case statement are
executed. If the result doesn’t match any of the values in the Case statements, the
statements following the Case Else statement are executed.

Looping Constructs

Like other programming languages, Visual Basic .NET also supports various looping
constructs, which include While…End While, Do…Loop, For…Next, and For Each…Next
statements. Take a look at each one of these constructs in detail in the next few
sections.

Understanding While…End While Statements

The While…End While statement specifies that a set of statements should repeat as
long as the condition specified is true. The syntax for a While…End While statement is

While Condition(s)

 Statement(s)

End While

In this syntax, Condition(s) is evaluated at the beginning of the While loop and can be
True or False. If it is True, Statement(s) is executed. The End While statement is used to
exit a While loop.

Understanding Do…Loop Statements

There are two forms of Do…Loop statements available in Visual Basic .NET. The first
form checks for a condition before executing the loop. The syntax for this form is

Do While | Until Condition(s)

 Statement(s)

 [Exit Do]

Loop

Notice that you can either use the While or Until keyword. Use the While keyword to
execute the Statement(s) as long as the Condition(s) are True. Use the Until keyword to
execute the Statement(s) as long as the Condition(s) are False. The Exit Do statement is
used to exit the Do loop.

The second form of the Do…Loop statement checks for the condition after executing the
loop once. The syntax for this form of the Do…Loop statement is

Do

 Statement(s)

 [Exit Do]

Loop While | Until Condition(s)

Understanding For…Next Statements

For…Next statements are used to repeat a set of statements a specific number of times.
The syntax for these statements is

For Counter = <StartValue> to <EndValue> [StepValue]

 Statement(s)

 [Exit For]

Next Counter

Here, Counter is a numeric variable, StartValue is the initial value of Counter, and
EndValue is the final value of Counter. The For loop repeats as long as the value of
Counter is between StartValue and EndValue. StepValue can be positive or negative; it
is the value by which Counter, needs to be incremented. StepValue is optional and, if
omitted, is assumed to be 1.

The Next statement marks the end of a For loop. When this statement executes,
StepValue is added to Counter, and the For loop repeats if the value of Counter is
between StartValue and EndValue.

Tip It is good programming practice to specify the name of the counter
variable in a Next statement, so that you can identify which variable
affects the execution of the For loop.

Note For loops can be nested. This means that you can include one For

loop inside another For loop. However, when nesting For loops,
make sure that you use different counter variables, and that the
sequence of the Next statements is correct.

Understanding For Each…Next Statements

A different implementation of the For loop is the For Each…Next statement. The For
Each…Next statement is used to iterate through an array or a collection. The syntax for
the For Each…Next statement is

For Each Element in List

 Statement(s)

 [Exit For]

Next [Element]

In this syntax, Element refers to individual elements in List. List can be an array or a
collection.

As an example of the For Each loop, consider this code, which uses a For Each loop to
iterate through each element in WeekArray. When iterating through the array, the
WeekDay variable is used to refer to individual elements of the array.

This completes the discussion of the basics of Visual Basic .NET. As you read through
the other chapters of this book, you will use the concepts you learned in this chapter to
write code for your applications.

Chapter 5: Beginning with a Simple ASP.NET
Application

Overview

In the last two chapters, you were introduced to the basics of Visual Basic .NET and
ASP.NET. In this chapter, you will apply the skills that you learned in the previous two
chapters to create an ASP.NET application.

Creating an ASP.NET application in Visual Studio .NET is fast and easy. The common
tasks that you perform while creating your application, such as adding Web forms to an
application, placing controls on a form, and responding to events generated when users
interact with a form, are most easily performed in Visual Studio .NET. The objective of
this chapter is to get you acquainted with how these tasks are performed in Visual Studio
.NET. In this chapter, you’ll learn how to:
§ Create ASP.NET Web applications
§ Design forms for Web applications
§ Respond to user interaction

Creating ASP.NET Web Application Projects

An ASP.NET application is installed in a virtual directory in IIS. You can design stand-
alone ASP.NET pages and copy these pages to a virtual directory in IIS to run them.
However, when you use Visual Studio .NET, you can create a solution that includes a
number of projects. Each project can include a number of ASP.NET applications.

The advantage of creating a solution is that you do not need to explicitly create a virtual
directory for deploying the ASP.NET pages of your Web application. A solution enables
you to create a deployment project and move your application from the development to
the production environment.

In this section, I will explain the steps to create a new solution and add a project to it.
The project will include one or more Web forms that can be displayed on a Web site.

Creating a New Project

To create a new project in Visual Studio .NET, follow these steps.
1. Click on Start. The Start menu will appear.
2. Move the mouse pointer to Programs, and then to Microsoft Visual Studio .NET. The
Microsoft Visual Studio .NET submenu will appear.
3. Click on Microsoft Visual Studio .NET. The Microsoft Visual Studio .NET application
will launch.
4. Click on File. The File menu will appear.
5. Move the mouse pointer to New. The New submenu will appear.

6. Click on Project. The New Project dialog box will open.
7. Click on the Visual Basic Projects folder. The templates available for creating Visual
Basic .NET projects will appear in the Templates list.

8. In the list of templates, click on ASP.NET Web Application. The option will be
selected.
9. Type the name of the Web application in the Location text box.

Tip When you type the name of the Web application, make sure that

you retain the location of the Web application and change only the
name. For example, if the original location and name of the Web
application is http://npandey-d185/WebApplication1, change only
the name by replacing only the WebApplication1 substring in the
Location text box.

10. Click on OK. Visual Studio .NET will create a new project for you at the specified
location.

Renaming a Web Form

By default, a blank Web form named WebForm1.aspx is added to your application when
you create it. However, when you create applications, you will probably name the Web
forms based on their utility. For example, the search form in a Web application might be
named Search.aspx. Similarly, the default form in a Web application might be named
Default.aspx. To change the name of a Web form, follow these steps.
1. Right-click on the name of the form in the Solution Explorer. A shortcut menu will
appear.
2. Click on Rename. The name of the Web form will be selected.

3. Type a new name for the Web form and press Enter. When renaming a Web form,
make sure that you type the file extension for the Web form as well. For example, type
Default.aspx.

When you change the name of a Web form, the name of the code-behind file also
changes accordingly. For example, if you specified the name of the Web form as
Default.aspx, the name of the code-behind file would change to Default.aspx.vb.

Changing the Class Associated with a Web Form

After you change the name of a Web form, the next step is to change the name of the
class that is associated with the form.

Namespaces and Classes in ASP.NET Applications

Visual Basic .NET is an object-oriented language. By default, all code in your
application is organized into classes. Therefore, when you create a new application, a
namespace with the name of your application is created. Each form that you add to the
application is treated as a class in the namespace. For example, if you have a Web
form named WebForm1.aspx for an application that is named MyFirstApplication, a
MyFirstApplication namespace will be created for your application, and a class
(WebForm1) that corresponds to the WebForm1.aspx page will be created in the
MyFirstApplication namespace. The classes for Web forms are always created in the
code-behind files.

When you change the name of a form, it is a good idea also to change the name of the
class associated with the form so that the development team can easily identify which
class is linked to which form.

To change the name of the class for a Web form, follow these steps.
1. Double-click on a form in the Design view. The code-behind file for the form will open.

2. In the code-behind file for the form, change the name of the class (which appears after
the Public Class declaration). For example, I have changed the name of the class for the
form to DefaultForm.

3. When you change the class name of a form in the code-behind file, you also need to
change the class name in the @ Page directive of the Web form. To do so, locate the @
Page directive in the HTML view of the form and change the name of the class.

Tip The name of the class is the last word in the @ Page directive.

Adding a New Form

So far, I have described the steps to change the name of a form and the default class
associated with it. A Web application usually includes a number of Web forms.
Therefore, in addition to the default form that is added to your application, you need to
add forms to your application.

You probably don’t need to change the name of any subsequent forms that you add to
your application because you will specify the form name when you add it to the
application. Therefore, the effort involved in customizing a new form for your application
is significantly reduced.

To add a new form to your application, follow these steps.
1. Right-click on the name of the project in the Solution Explorer. A shortcut menu will
appear.
2. Move the mouse pointer to Add and then select Add Web Form from the Add
submenu. The Add New Item dialog box will open.

3. Make sure that the Web Form option is selected in the Templates section of the Add
New Item dialog box.
4. Type the name of the Web form in the Name text box.
5. Click on Open. A new form will be created for you.

In the code-behind file and @ Page directive for the new form, notice that the class
name is the same as the name of the Web form. Therefore, you don’t need to change
this name explicitly.

Designing Forms

The Toolbox in Visual Studio .NET is handy for designing Web forms. When using the
Toolbox, all you need to do is drag controls and arrange them on a Web form.

You design a form in the Design view. Visual Studio .NET provides two layouts for a form
in the Design view—GridLayout and FlowLayout. The interface of your application can
depend upon the layout that was used to design the application’s forms. In this section,

you will examine the difference between the GridLayout and the FlowLayout of a form,
and how you can design a form by dragging controls to it from the Toolbox.

Selecting a Layout for a Form

You can use GridLayout or FlowLayout to design a form. Following are brief descriptions
of these layouts.

§ GridLayout. GridLayout uses absolute coordinates to position controls
on a Web form. For example, if you place a control at the coordinates
(10,20), the position of the control will not change with respect to other
controls or the size of the form.

§ FlowLayout. FlowLayout does not position controls on a form by their
coordinates. Instead, the position of controls is automatically determined
with respect to the position of other controls on the form. Thus, the first
control is automatically placed on the upper-left corner of the screen. The
position of the next control is determined by the width and height of the
first control.

Each layout has its own advantages and disadvantages. For example, if you know the
exact size of the form that will be used, you can go with GridLayout because you don’t
need to worry about the how the controls will appear when your form is resized.

However, GridLayout poses a problem when you need to display or hide controls on the
form dynamically. For example, you might have a search page that displays a calendar if
the user needs to search by date. The results of the search might be displayed in a table.
Using GridLayout, each control would retain its respective position even when other
controls are removed from the form.

Adding Controls to a Form
When you design a form, you add controls to it. In a text editor, you use HTML tags to
add controls to a form. For example, you use the <TABLE> and </TABLE> tags to add a
table to your form. You can accomplish the same task in Visual Studio .NET by using the
Toolbox. You can add Web form controls and HTML controls to your form by dragging
them from the Toolbox onto the form. In this section, I will describe the procedure to
create a simple form to accept information from users. For more detailed information
about the controls that you can add to a form and their configurable properties, see
Chapter 6, “Adding Server Controls to a Web Form.”

When you add a control to your form using the Toolbox, the corresponding HTML code
for the form is automatically generated. Try designing a form that accepts the user name
and password from a user. To add controls to a form, open the form and follow these
steps.
1. Click on the Label control in the Toolbox. The Label control will be selected.

2. Press and hold the mouse button and drag the Label control to the form. Release the
mouse button to place the Label control on the form.
3. Right-click on the Label control. A shortcut menu will appear.
4. Click on Properties. The Properties window for the control will appear.
5. Double-click on the Text property. The Text property will be highlighted.

6. Type User Name in the Text field and press Enter. The text displayed on the Label
control will change to User Name.
7. Drag another Label control to the form and change its Text property to Password.

8. Drag a TextBox control from the Toolbox to the form and open the control’s Properties
window.
9. In the Properties window, type txtUserName as the ID of the control.
10. Drag another TextBox control from the Toolbox to the form.
11. Change the ID property of the control to txtPassword.
12. Change the TextMode property of the control to Password. This change will ensure
that when the form is run, the control will mask the characters that are typed into it.

13. Drag a Button control from the Toolbox to the form and change its ID and Text
properties to btnSubmit and Submit, respectively.

14. To display a message to users when they enter an incorrect user name or pass-
word, drag another Label control onto the form from the Toolbox.
15. Clear the Text property of the label and change the value of the ID property to
lblMessage.

Note When you add a Label control to the form and clear the text that is

displayed in the label, the form displays the name of the label in
parentheses, so that you can place the label accurately at design
time.

The form that you have just designed accepts the user name and password from a user.
Next you’ll learn about the steps to respond to user interactions with the form.

Designing Forms

The Toolbox in Visual Studio .NET is handy for designing Web forms. When using the
Toolbox, all you need to do is drag controls and arrange them on a Web form.

You design a form in the Design view. Visual Studio .NET provides two layouts for a form
in the Design view—GridLayout and FlowLayout. The interface of your application can
depend upon the layout that was used to design the application’s forms. In this section,
you will examine the difference between the GridLayout and the FlowLayout of a form,
and how you can design a form by dragging controls to it from the Toolbox.

Selecting a Layout for a Form

You can use GridLayout or FlowLayout to design a form. Following are brief descriptions
of these layouts.

§ GridLayout. GridLayout uses absolute coordinates to position controls
on a Web form. For example, if you place a control at the coordinates
(10,20), the position of the control will not change with respect to other
controls or the size of the form.

§ FlowLayout. FlowLayout does not position controls on a form by their
coordinates. Instead, the position of controls is automatically determined
with respect to the position of other controls on the form. Thus, the first
control is automatically placed on the upper-left corner of the screen. The
position of the next control is determined by the width and height of the
first control.

Each layout has its own advantages and disadvantages. For example, if you know the
exact size of the form that will be used, you can go with GridLayout because you don’t
need to worry about the how the controls will appear when your form is resized.

However, GridLayout poses a problem when you need to display or hide controls on the
form dynamically. For example, you might have a search page that displays a calendar if

the user needs to search by date. The results of the search might be displayed in a table.
Using GridLayout, each control would retain its respective position even when other
controls are removed from the form.

Adding Controls to a Form
When you design a form, you add controls to it. In a text editor, you use HTML tags to
add controls to a form. For example, you use the <TABLE> and </TABLE> tags to add a
table to your form. You can accomplish the same task in Visual Studio .NET by using the
Toolbox. You can add Web form controls and HTML controls to your form by dragging
them from the Toolbox onto the form. In this section, I will describe the procedure to
create a simple form to accept information from users. For more detailed information
about the controls that you can add to a form and their configurable properties, see
Chapter 6, “Adding Server Controls to a Web Form.”

When you add a control to your form using the Toolbox, the corresponding HTML code
for the form is automatically generated. Try designing a form that accepts the user name
and password from a user. To add controls to a form, open the form and follow these
steps.
1. Click on the Label control in the Toolbox. The Label control will be selected.

2. Press and hold the mouse button and drag the Label control to the form. Release the
mouse button to place the Label control on the form.

3. Right-click on the Label control. A shortcut menu will appear.
4. Click on Properties. The Properties window for the control will appear.
5. Double-click on the Text property. The Text property will be highlighted.

6. Type User Name in the Text field and press Enter. The text displayed on the Label
control will change to User Name.
7. Drag another Label control to the form and change its Text property to Password.

8. Drag a TextBox control from the Toolbox to the form and open the control’s Properties
window.
9. In the Properties window, type txtUserName as the ID of the control.
10. Drag another TextBox control from the Toolbox to the form.
11. Change the ID property of the control to txtPassword.
12. Change the TextMode property of the control to Password. This change will ensure
that when the form is run, the control will mask the characters that are typed into it.

13. Drag a Button control from the Toolbox to the form and change its ID and Text
properties to btnSubmit and Submit, respectively.

14. To display a message to users when they enter an incorrect user name or pass-
word, drag another Label control onto the form from the Toolbox.
15. Clear the Text property of the label and change the value of the ID property to
lblMessage.

Note When you add a Label control to the form and clear the text that is

displayed in the label, the form displays the name of the label in
parentheses, so that you can place the label accurately at design
time.

The form that you have just designed accepts the user name and password from a user.
Next you’ll learn about the steps to respond to user interactions with the form.

Chapter 6: Adding Server Controls to a Web
Form

Overview

Server controls (or Web form controls, as they are commonly known) are used to design
the interface and code the functionality of an application. As the name suggests, these
controls use a server-side programming model in which events are generated and
processed at the server end.

Server controls provide many advantages over the traditional HTML controls that you
might have used in your ASP 3.0 Web applications. One important advantage is that the
server-side script has complete control over the state of server controls even after a
page has been rendered. Thus, even after a page is displayed to a user, the text that
appears on a label or the contents of a list box can be altered by round trips, which occur
when Web forms are returned to clients after data processing occurs at the server. This
provides flexibility and improved performance to your application. In this chapter, you'll
learn how to:
§ Use ASP.NET server controls
§ Code the functionality of a Web form

Using ASP.NET Server Controls

Some of the controls that you see in the Toolbox are similar in their functionality. For
example, the Button, LinkButton, and ImageButton controls display buttons on the Web
form. Similarly, the CheckBoxList and RadioButtonList controls display a number of
options on the screen. The difference between these two controls is that the
CheckBoxList control allows you to select multiple options from a list, while the
RadioButtonList control only allows you to select one option. In this section, I will discuss
one control for each type of functionality and describe the steps to configure the control
by changing its properties.

As I explain the concepts in this chapter, you can create a sample application. Then you
can build on the application as you study the later chapters of this book. When you finish
reading this book, you will have created a completely functional application.

Note Even though the same application is built upon as you read this
book, the chapters are independent of each other. Each chapter
includes concepts pertaining only to specific features of the
application.

I have created an ASP.NET application, MySourceCode, and changed the name of the
application’s default form to Search.aspx. I have also changed the pageLayout property
of the Web form to FlowLayout. Read on to learn how to design the Search form by
adding controls to the form.

Working with the Label Control

The Label control is used to display information on a Web form. It is often used to label
other controls on a Web form. For example, you might use the Label control to label a
text box. However, you can also use the Label control to alter text that is displayed on a
Web form, as you might do when you want to display an error message on a form. To
add the Label control to a form, follow these steps.
1. Click on the Label control in the Toolbox. The Label control will be selected.

Tip If the Toolbox is not visible, click on the View menu and select

Toolbox.
2. Press and hold the mouse button and drag the Label control to the form. The Label
control will be placed on the form.
3. Right-click on the Label control. A shortcut menu will appear.
4. Click on Properties. The Properties window will appear.
5. Type lblCaption in the ID property field for the label.
6. Type ASP.NET Server Controls in the Text property field for the label.

7. Double-click on the Font property. The properties for the font will appear.

8. Click on the Name field and select Verdana from the list of fonts.
9. Type 14 in the Size property field.

When you use FlowLayout to design your form, you can use the Formatting toolbar to
format it. In GridLayout, it is not possible to align your controls centrally on a form
because you must specify the exact position of the control on the form. However, in
FlowLayout you can align controls using the Formatting toolbar. The steps to align
controls using the Formatting toolbar are given here.
1. Click to the left of the lblCaption label. A caret will be placed at the point of click.

2. Click on the Center button on the Formatting toolbar. The lblCaption label will be
aligned at the center of the form.

In the FlowLayout view, you can also type directly onto a form. Therefore, instead of
adding the Label control to the form, you could’ve typed the text that you wanted on the
form. However, I added the Label control to the form so you could see how to use the
Label control and the steps to change the common properties of controls on the form.
You can remove this control before you proceed.

Working with the DropDownList Control

The Search form that you design in this chapter uses the DropDownList control to
display the parameters by which a user can search for an article. The parameters by
which articles can be searched are Author, Topic, Level of Difficulty, and Date of Upload.
The user can select one option from the drop-down list and search using that option. To
add a DropDownList control to your application, follow these steps.
1. Click on the DropDownList control in the Toolbox. The control will be selected.
2. Press and hold the mouse button and drag the control to the form. The DropDownList
control will be added to the form.
3. In the Properties window for the DropDownList control, change the ID property of the
control to lstSearch.

4. To specify a label for the lstSearch control, click to the left of the control. A caret will
appear.
5. Type Search by:.

After you add the DropDownList control to the form, you need to add items to the list. To
do so, use the Items Collection of the DropDownList control.
1. Click on the lstSearch control. The control will be selected.
2. Click on the Items Collection in the Properties window. An Ellipsis button will appear in
the Items Collection.
3. Click on the Ellipsis button. The ListItem Collection Editor dialog box will open.
4. Click on Add. A new item will be added to the list.

5. Type Author in the Text property field for the first item in the list.
6. Repeat steps 4 and 5 to add three more items to the list. Specify Topic, Level of
Difficulty, and Date of Upload in the Text properties for these controls. When you add the
Topic item to the list, change the value of the Selected property from False to True. This
will ensure that when the Web form is run, the Topic option is selected by default.
7. Click on OK. The ListItem Collection Editor dialog box will close.

After you add the DropDownList control to the form, you can change its properties, such
as Font and ForeColor. For consistency, I always specify Verdana, X-Small as the font
for controls.

Working with the Button Control

The Button control is used to submit a form to the server for processing. For example,
users can fill in a registration form and submit it using a Submit button. In the
Search.aspx form, the Button control is used to display a set of controls depending upon
the option that the user has selected in the lstSearch control. For example, if the user
has selected the Author option, the form will display a text box in which the user can type
the name of the author.

To add the Button control to a form, follow these steps.
1. Drag the Button cont rol from the Toolbox to the form. The control will be added to the
form.
2. Invoke the Properties window for the control.
3. Change the ID of the control to btnGo.
4. Change the Text property of the control to Go!

After adding the Go! button to the form, you can check the option selected by the user in
the Click event of the form and display other controls on the form accordingly.

Working with the Panel Control

When you want to group a number of controls, you can use a Panel control. For
example, in the case of the Search form, you need to display different controls
depending on the search option that the user has selected. You can group controls that
pertain to each search option in a Panel control and display or hide the Panel control
depending on the option selected by the user.

You have four search options. Therefore, you need to add four Panel controls to the
form.
1. Drag the Panel control from the Toolbox to the form. The Panel control will appear on
the form.
2. Change the ID property of the Panel to PanelAuthor.
3. Follow steps 1 and 2 above to add three more panels to the form. Change the ID
properties of these panels to PanelTopic, PanelLevel, and PanelDate.

Tip To move successive controls to new lines on the form, click to the

right of a control and press the Enter key.

Each Panel control is labeled Panel by default. When you add controls to a panel, you
can select the text and delete it. Keep reading to learn how to design each panel of the
form.

§ PanelAuthor. The PanelAuthor panel allows the user to specify the
name of the author and search for articles written by the author.
Therefore, this panel includes a TextBox control and a Button control.
You can drag these controls from the Toolbox. I have named the
TextBox control txtAuthor and the Search button btnAuthor.

§ PanelTopic. The PanelTopic panel includes a DropDownList control that
lists the topics that can be used to search for articles. The steps to add a
DropDownList control were discussed earlier, in the “Working with the
DropDownList Control” section of this chapter. After you add the
DropDownList control to the form, change its ID to lstTopic and add five
items to it: ASP.NET Web Applications, ASP.NET Web Services, Visual
Basic and Visual C#, Visual C++ .NET, and .NET Framework SDK.

The PanelLevel and PanelDate panels include the RadioButtonList and Calendar
controls. I will discuss these controls in the following sections.

Working with the RadioButtonList Control

The RadioButtonList control is used to add a group of radio buttons to the form. For
example, if you need to accept the age group of users, you can use the RadioButtonList
control and add different radio buttons that signify different age groups.

In the MySourceCode application, the articles that are added to the form are rated on the
basis of their difficulty. Articles can be for beginning, intermediate, or advanced users.
When searching for articles, users can set the difficulty level as a parameter. When they
do so, the PanelLevel control is displayed to the user. This panel contains a
RadioButtonList control that allows the user to select the difficulty of the article. To add
the RadioButtonList control to a form, follow these steps.
1. Drag a RadioButtonList control from the Toolbox to the PanelLevel control on the
form. The RadioButtonList control will be placed in the PanelLevel control.
2. Change the ID of the control to lstLevel and add three items to the control—Beginner,
Intermediate, and Advanced.

Tip The procedure to add items to a RadioButtonList control is the same

as the procedure to add items to a DropDownList control.
3. Add a Search button and type the label for the RadioButtonList control to complete the
PanelLevel control.

Working with the Calendar Control

The Calendar control is used to select a date. In the MySourceCode application, users
can select a date to retrieve the articles that have been updated later than the date
specified.

You need to add the Calendar control to the PanelDate panel. To do so, follow these
steps.
1. Drag the Calendar control from the Toolbox to the PanelDate panel. The control will
be added to the form.
2. Change the ID of the Calendar control to CalStart.
3. You can change the appearance of a Calendar control to make it blend with your Web
form. For example, you can change the color of the title bar and the border of the
calendar to match your preferences. For this calendar, I have changed the BorderColor

property to #C04000, the BackColor property in the TitleStyle to #DFA894, and the
BackColor property in the DayHeaderStyle to #FFC0C0.

4. Complete the PanelDate panel by adding a title for the calendar and a Search button.

Working with the AdRotator Control

Aside from the controls discussed previously, another useful control that you can use on
your form is the AdRotator control. This control enables you to randomly select and
display advertisements on a Web form.

The advertisements that need to appear in the AdRotator control are specified in an XML
file. The XML file is in a specific format and enables you to specify the location of
advertisement banners and the relative duration for which each banner should appear.

A sample XML file is shown here. Notice that the XML file includes three Ad elements
that specify details of each advertisement. For each advertisement, the following
elements are present.

§ ImageUrl. The ImageUrl element specifies the URL of an image file. The
URL that you specify is relative to the root directory of the Web site.

§ NavigateUrl. The NavigateUrl element specifies the URL to which users
should be redirected when they click on an advertisement banner.

§ AlternateText. The AlternateText element specifies the text that should
be displayed if the advertisement banner cannot be found. This text is
also displayed as a tool tip when the user hovers the mouse pointer over
an advertisement.

§ Impressions. The Impressions element specifies the relative time for
which each advertisement should be displayed. For example, the values
for the Impressions element for the three advertisements are 40, 30, and

30. Therefore, these advertisements would be displayed in the ratio
4:3:3.

In order to use the AdRotator control, you need to add the XML file to your application.
Save the XML file to the same directory as your application and follow these steps.
1. Click on View. The View menu will appear.
2. Click on Solution Explorer. The Solution Explorer will open.
3. Right-click on the name of the project. A shortcut menu will appear.
4. Move the mouse pointer to Add. The Add submenu will appear.
5. Click on Add Existing Item. The Add Existing Item - MySourceCode dialog box will
open.

6. Click on the Files of Type down arrow and select Data Files (*.xsd;*.xml) from the list.
The XML file that you added to the application’s root directory will appear.
7. Click on the XML file and click on Open to add it to your project.

After you add the XML file to your project, you can add an AdRotator control to the
Search.aspx form.
1. Place a caret before the first element on the Search.aspx form and press Enter to
move the element to the next line.
2. Drag the AdRotator control from the Toolbox to the form. The control will be placed on
the form.
3. Click on the Ellipsis button for the AdvertisementFile property. The Select XML File
dialog box will appear.

4. Click on the XML file and click on OK to define the XML file associated with the
AdRotator control.

After you add the AdRotator control to the form, the design of the form is complete. Next,
you need to write the code for displaying selective controls on the form depending upon
the search parameter that a user selects. You’ll learn how to do that in the next section.

Coding the Functionality of a Web Form

You typically write the code to implement the functionality of an ASP.NET Web
application either in the Load event of a form or in the Click event of one or more buttons
on the form. In this section, I will explain the steps to code the functionality of the
Search.aspx form, which enables a user to specify a parameter and a value by which
articles should be searched in the application.

Coding the Load Event of a Form

The Load event of a form is often used to configure the initial state of a Web form before
the form is displayed to the user. For example, you might want to retrieve data from a
database and display it on the home page of a Web application.

In the Search.aspx form, the Load event of the form is used to hide all the panels from
the form except the PanelTopic panel, which is associated with the Topic item of the
Search By list.

Hiding and Displaying Panels on a Form

You need to display or hide panels depending on the search parameter selected by a
user. For example, if a user wants to search for articles by the name of the author, you
need to hide all other panels except PanelAuthor.

After you write the code to determine which panel to display, set the Search.aspx form
as the startup form and run the application. See Chapter 5, “Beginning with a Simple
ASP.NET Application,” for more information about specifying a startup form and running
the application.

You will notice that the Search form is not complete yet. You still need to write the code
for the Search button in each panel. However, this involves connectivity to a database
and the use of data binding server controls. See Chapter 11, “Displaying Data Using
Data Binding Server Controls,” to complete the Search.aspx form by adding the code to
retrieve data from the database and display it on the form.

Chapter 7: Accepting Information Using Web
Forms

Overview

In ASP.NET applications, you often accept information from users. To accept information
from users, you can use the ASP.NET server controls, as well as HTML controls. Often,
it becomes necessary to use server controls and HTML controls in conjunction to accept
information. For example, if a user wants to upload a file to the Web server, it is best
done using HTML controls.

An ASP.NET form that accepts information from a user needs to be validated. You need
to ensure that the user has provided values for mandatory fields of a form, and that the
provided values are valid. ASP.NET includes a number of validation controls that enable
you to validate information specified by users. For example, you can ensure that a field
has not been left blank, and that the values specified by the user are in the correct
format. In this chapter, you'll learn how to:
§ Design forms to accept information
§ Validate information on a form

Designing Forms to Accept Information

You can design customized forms to accept information from users. The design of the
form and the validation rules will depend on the purpose of the information you are
accepting from users. You might also make it optional for users to specify certain
information.

Regardless of the design of your form, the concepts for accepting information from users
are the same. In this section, I will design a Web form for accepting the details of a new
article that a user wants to add to a Web application. When the user specifies the details
of the new article, he will also have the option to upload source files for the article using
HTML controls.

Understanding Form Structure
The form that you will design in this section is used to accept details of a new article that
is added to an application. The form, AddNew.aspx, is a component of the
MySourceCode application. The application is a corporate portal that is used to share
programming code with developers. You created the Search.aspx form for this
application in Chapter 6, “Adding Server Controls to a Web Form;” see Chapter 6 for
more information.

Adding Server Controls to a Form
Server controls are server-side components that are used to display information on Web
forms. They are also used for processing information that is provided by users. Most of
the server controls were discussed in Chapter 6, “Adding Server Controls to a Web
Form.” The AddNew.aspx form uses four types of server controls: TextBox,
CheckBoxList, RadioButtonList, and Button.
Before you add server controls to a form, open the MySourceCode application. If you
have not created the MySourceCode application, create a new ASP.NET Web
application, and then add a Web form to the application and name it AddNew.aspx. See
Chapter 5, “Beginning with a Simple ASP.NET Application” for more information about
adding Web forms to a project.

After you add the Web form to your project, follow these steps to add server controls to
the Web form.
1. Double-click on the AddNew.aspx form in the Solution Explorer. The form will open in
Design view.
2. Click on View. The View menu will appear.
3. Click on Properties Window. The Properties window will appear.

4. Change the pageLayout property from GridLayout to FlowLayout. The layout of the
page will change.

5. Type the label for each server control that you want to add to the Web form. Leave a
blank line after each label.
6. Add TextBox controls to accept the title, description, and reference URL of an article.

7. Change the ID properties of the TextBox controls to txtTitle, txtDescription, and
txtURL, respectively.
8. Change the TextMode property of the txtDescription control to MultiLine.

9. Add a CheckBoxList control to the form. Change the ID property of the control to
optCategory and add five items to the list: ASP.NET Web Applications, ASP.NET Web
Services, Visual Basic and Visual C#, Visual C++ .NET, and .NET Framework SDK. See
Chapter 6, “Adding Server Controls to a Web Form,” for more information about adding
items to a list.
10. Add a RadioButtonList control to the form. Change the ID property of the control to
optLevel and the RepeatDirection property to Horizontal.

11. Add three items to the optLevel control: Beginner, Intermediate, and Advanced.

A Submit button must be added to the form to enable the user to submit the form for
processing when it is completed. However, I will add this button after I complete the
design of the form by adding HTML controls to incorporate the functionality of uploading
files to the Web server.

Adding HTML Controls to the Form

HTML controls are controls that map to HTML elements used for designing Web forms.
HTML controls provide the necessary properties to change the state of the control on the
client side. However, these controls can be easily run as server controls by specifying
the runat=server directive. Therefore, these controls are useful when you want to
process information on the client side as well as the server side.

In this section, I will illustrate the use of HTML controls to upload files to a Web server. I
will use these controls to accept the documentation, source code, and graphic files, if
any, for an article.

To add HTML controls to a form, follow these steps.
1. Type the labels for the documentation, attachments, and picture file controls that you
want to add to the form.

2. Click on the HTML tab in the Toolbox. The available HTML controls will appear.
3. Click on the File Field control. The control will be selected.

4. Press and hold the mouse button and drag the control to the form. The File Field
control will be added to the form.
5. Change the ID property of the File Field control to documentation.
6. Right-click on the documentation control. A shortcut menu will appear.
7. Click on Run as Server Control.

8. Repeat steps 5–7 to add two additional File Field controls to the form.

9. Change the ID properties of the controls to attachments and picture, respectively.
10. Select a Button control from the Web Forms tab of the Toolbox and add it to the
form.
11. Change the ID property of the Button control to btnSubmit and the Text property to
Submit.

Validating Information on a Form

By now, you are familiar with the need to validate a form. ASP.NET provides a number of
validation controls that enable you to validate information provided by users in server
and HTML controls.

In this section, I will introduce you to the validation controls that are provided by
ASP.NET. I will then use these controls on a form and perform validation.

Understanding Validation Controls in ASP.NET

ASP.NET provides six validation controls. These controls include
§ RequiredFieldValidator. The RequiredFieldValidator control is used to

ensure that a user has not left a field blank. For example, you can
associate a RequiredFieldValidator control with the user name field to
ensure that the user does not leave the field blank.

§ CompareValidator. The CompareValidator control is used to compare
the value specified by a user in one control with values in another
control, or with a predefined set of values. For example, while registering
a user, you can use the CompareValidator control to ensure that the user
has specified the same values in the Password and Confirm Password
fields.

§ RangeValidator. The RangeValidator control is used to compare the
values specified by a user with a range of values. For example, you can
use the RangeValidator control to ensure that the age specified by a user
is between 1 and 100.

§ RegularExpressionValidator. The RegularExpressionValidator control
is used to ensure that a user has specified information in the correct
format. There are a number of expressions, such as URLs and e-mail
addresses, which follow a predefined format. Therefore, you can use a
RegularExpressionValidator control to ensure that a user has entered a
piece of data, such as an e-mail address, in the predefined format.

§ CustomValidator. The CustomValidator control is used to specify a
script for validation. Sometimes you will realize that none of the validation
controls that are provided by ASP.NET meet your requirements. For
example, how would you ensure that a user has specified a valid file for
uploading? You can specify a script for the CustomValidator control. The
script is then executed each time the Web form is submitted to the server
for processing. If the values specified by the user do not meet the
required criteria, an error message is displayed on the Web form.

§ ValidationSummary. The ValidationSummary control is used to
summarize all incorrect values on a Web form. For example, you might
use a number of validation controls on the same form. When a user
submits the form, you can use the ValidationSummary control to
summarize all of the error messages or display all of the error messages
in a message box.

Now that you have examined all of the validation controls, you need to add these
controls to a Web form.

Adding Validation Controls to a Form

In this section, I will add different types of validation controls to validate data specified by
a user in the AddNew.aspx form. To add validation controls to the form, follow these
steps.
1. Click on the RequiredFieldValidator control in the Toolbox.
2. Press and hold the mouse button and drag the control beyond the label of the first text
box on the form. A RequiredFieldValidator control will be added to the form.
3. Change the ControlToValidate property of the RequiredFieldValidator control to
txtTitle. Change the Display property to Dynamic, and change the ErrorMessage
property to Specify a Valid Title for the Article.

Note Take a moment to consider the properties of the

RequiredFieldValidator control that you have changed. The
Cont rolToValidate property specifies the control to be validated.
Setting the Display property to Dynamic adjusts the position of the

error message that is displayed depending upon the width of the
form. Finally, the ErrorMessage property specifies the error
message that is displayed if a control is not validated successfully.

4. Repeat steps 1–3 to add another RequiredFieldValidator control for validating the
txtDescription control.
5. Add a RegularExpression Validator control to validate the txtURL control.
6. Change the ControlTo Validate, Display, and ErrorMessage properties to txtURL,
Dynamic, and Specify a Valid URL, respectively.

7. For the RegularExpression Validator control, you also need to specify the validation
expression. Click on the ValidationExpression property. An Ellipsis button will appear
next to the ValidationExpression property.
8. Click on the Ellipsis button. The Regular Expression Editor dialog box will open.

9. Click on the Internet URL option in the Standard Expressions list. The option will be
selected.
10. Click on OK. An expression that corresponds to an Internet URL will be added to the
ValidationExpression property.

Tip Often users do not include the http:// prefix when specifying a URL.

To accept a URL from the user without the http:// prefix, you can
change the ValidationExpression property from http://([\w-]+\.)+[\w-
]+(/[\w- ./?%&=]*)? to ([\w-]+\.)+[\w-]+(/[\w- ./?%&=]*)?

11. You also need to validate the optCategory, documentation, attachments, and picture
controls. Drag the CustomValidator control from the Toolbox to the form.
12. Change the ID property of the control to ValidateCategory. Change the Display
property to Dynamic, and change the ErrorMessage property to Select a Category.

Note You do not need to specify a value for the ControlToValidate

property of the CustomValidator control because you are declaring
a custom script that will be executed for the control.

13. Repeat steps 11 and 12 to add CustomValidator controls for the documentation,
attachments, and picture controls. The IDs for the validation controls should be
ValidateDoc, ValidateAtt, and ValidatePic, respectively.

For CustomValidator controls, you need to specify a validation script. The script is
executed every time the page is submitted. If the control with which the CustomValidator
control is associated is not validated successfully, an error message will be displayed. I
will now write the script for the CustomValidator controls that you added in steps 11–13.

Coding the Validation Logic

The validation logic for a CustomValidator control is coded in the Server_Validate event
of the control. To begin, write the validation logic for the ValidateCategory control.
1. Double-click on the ValidateCategory control in Design view. The declaration for the
Server_Validate event will be created, and the code-behind file for the form will open.
2. Write the code for the Server_Validate event. The code written here determines
whether any option is selected in the optCategory list. When no option is selected in the
list, the value of the SelectedIndex property is −1. When the value is −1, the IsValid
property for the control that is being validated is set to False.

3. Write the code for the ValidateDoc CustomValidator control. The code written here
determines whether the user has a file name. If the user has not specified a file name
(which is determined by examining the PostedFile property of the documentation
control), the IsValid property of the control is set to False.
4. Use the GetExtension function of the Path class to check the file extension, which will
determine the validity of the file entered by the user. If the extension of the file is not .txt,
the IsValid property of the documentation control is set to False.

Note Make sure that you import the System.IO namespace into your

application before you use the Path class. To import the
System.IO namespace, specify the Imports System.IO statement
as the first line of the AddNew.aspx.vb file.

5. Write the code for the validation controls associated with the attachments and picture
controls. It is optional for the user to specify a value in these controls. Therefore, validate
the controls only when the user has specified values in the control. You should also

check whether the size of the uploaded file is less than 1 MB. This is determined by the
ContentLength property of the attachments control.

Running the Form

Now you can run the form to determine whether the validation controls work as desired.
Click on the Debug menu and select Start. When the application executes, type the
address of the AddNew.aspx form in your Web browser.

This completes our discussion of the validation controls. In the next two chapters, you
will learn about the basics of database access. You will use those concepts to code the
complete functionality of the forms in your application.

Chapter 8: SQL Server Basics

Overview

In addition to the source code of an application in ASP.NET, you also need databases
and tables in which to store data for the application. These databases need to be
compatible with the application to ensure that data can be easily added, modified, and
retrieved.

ASP.NET is compatible with SQL Server and can store and retrieve data from SQL
Server using SQL commands. Before you begin using SQL Server in ASP.NET
applications, you should know the basics of creating and managing SQL Server
databases. In this chapter, you’ll learn how to:
§ Create databases and tables using the SQL Server Enterprise Manager
§ Insert, update, and delete data from databases using the Query Analyzer
§ Retrieve data from databases using the Query Analyzer
§ Create stored procedures using the Query Analyzer

Creating Databases and Tables

Before you can store data for an ASP.NET application in SQL Server, you need to create
a database and add tables to it.

In this section, you will learn how to create a database in SQL Server using the SQL
Server Enterprise Manager. Then you will learn to create a table in the database.

Creating a Database
When you install SQL Server 2000, you can register more than one instance of SQL
Server on the same computer. After registering the SQL servers, you can use the SQL
Server Enterprise Manager to manage them. SQL Server Enterprise Manager is an
MMC (Microsoft Management Console)-based tool that provides a GUI (Graphical User
Interface) for managing SQL servers and databases. Two important tasks performed by
SQL Server Enterprise Manager are database and table creation.

You can open the SQL Server Enterprise Manager from the Microsoft SQL Server
submenu in the Programs menu. To create a database in SQL Server using the SQL
Enterprise Manager, follow these steps.
1. Click on the plus sign next to the Microsoft SQL Servers option. The list of SQL server
groups created on the computer will be displayed.

2. Click on the plus sign next to the SQL Server Group option. The list of SQL servers
installed on the computer will be displayed.
3. Click on the plus sign next to the server on which you want to create the database.
The components of the database will be displayed, and more buttons will appear on the
toolbar in the Console window.

4. Click on Action. The Action menu will appear.
5. Move the mouse pointer to New. The New submenu will appear.
6. Click on Database. The Database Properties dialog box will open.

7. Type the name of the database that you want to create. As you type the name, it will
appear in the title bar of the Database Properties dialog box.
8. Click on OK. The Database Properties dialog box will close, and a new database will
be created with the name you specified.

Creating a Table

To create a table in SQL Server using SQL Enterprise Manager, simply follow these
steps.
1. Click on the plus sign next to the Databases option. The databases on the server to
which you are connected will be displayed.
2. Click on the plus sign next to the database in which you want to create a table. The
contents of the database will be displayed.

3. Click on the Tables option. A list of all the tables in the selected database will be
displayed in the right pane of the console window.

4. Click on Action. The Action menu will appear.
5. Click on New Table. A new console window will appear.

6. In the rows contained in the window, specify the details of the fields that are to be
included in the table. For each field you need to specify the field name, the data type of
the field, the length of the field, and whether or not the field will contain null values.

7. Type the name of the first field in the table and press the Tab key. By default, the field
will be a character field with a size of 10 characters that allows null values.

8. Click on the down arrow in the first cell in the Data Type column. A list containing all
possible field types will be displayed.
9. Click on the data type that matches the requirements of the field. The specified data
type will be assigned to the field.
10. Double-click on the first cell in the Length column, type the field size, and press the
Tab key. The field size will be set, and the corresponding cell in the Allow Nulls column
will be selected.

11. Click on the check box in the first cell of the Allow Nulls column. The check mark in
the Allow Nulls column will be cleared. This ensures that you will not be able to specify
null values for the field.

Tip If you want to allow null values in a field, you should not clear the
check box in the Allow Nulls field.

12. Click on the Identity field in the Columns section. A down arrow will appear. This box
is active only if the int data type is specified for a field. Selecting this box ensures that
you cannot insert or edit values in the selected field, and that a value is automatically
specified for each new row.

13. Click on the down arrow in the Identity field. A drop-down list of options will appear.

14. Click on Yes. This will ensure that the selected field will contain integer values that
will be automatically incremented by 1 for each row of values.
15. Click on the Set Primary Key button. The selected field will be set as the primary field
of the table.

16. Create the rest of the fields of the database table the same way you created the first
field.

17. Click on Save. The Choose Name dialog box will open.
18. Type the name of the new table and click on OK. The table will be saved.

19. Click on Close. The window will close, and the updated table list for the selected
database will appear.

Managing Data

The main purpose for creating databases and tables is to ensure that application data
can be stored, updated, and deleted from the appropriate tables easily. You can insert,
update, and delete data from the tables in SQL Server by running SQL commands in the
Query Analyzer that can be displayed using the Query Analyzer option on the Microsoft
SQL Server submenu.

In this section, you will learn to insert, update, and delete data from a table in SQL
Server using the Query Analyzer.

Inserting Data

Before you insert data in a table using the Query Analyzer, you need to select the
database that contains the table into which you want to insert data. You can open the
Query Analyzer from the Microsoft SQL Server submenu in the Programs menu.

After you’ve opened the Query Analyzer, select the database that contains the
appropriate table.
1. Click on the down arrow for the Current Database list on the toolbar. A list of all of the
available databases will be displayed.

2. Click on the database to which you want to connect. The current database will change
to the specified one, which will ensure that all of the SQL commands specified in the
Query Analyzer will be run on that database.

After you connect to the database, you can type SQL commands in the Query window to
manage data in the current database. Use the INSERT INTO command to insert data
into a table using the Query Analyzer. The syntax of the command for inserting data into
a table that contains three fields is

INSERT INTO TableName (FieldOneName, FieldTwoName, FieldThreeName)
VALUES

 (ValueOne,ValueTwo,ValueThree)

The TableName value represents the name of the table into which data will be added.
Replace TableName with the appropriate table name.

The FieldOneName, FieldTwoName, and FieldThreeName values represent the fields in
the table. Notice that these field names are enclosed in parentheses and separated by
commas. Replace these values with the names of fields to which data will be added.

After you specify the name of the table and the names of the fields into which data will be
added, you need to specify the values that will be added to each of the fields that follow
the VALUES keyword. In this example, the values to be added to the table are
represented by ValueOne, ValueTwo, and ValueThree. Notice that they are enclosed in
parentheses and separated by commas. These values should be in the same order as
the field names specified after the table name. In addition, they should be specified in
accordance with the data types for their respective fields.

Note You do not need to include all of the fields in the table in the
INSERT statement. You can omit the fields that contain null
values.

Tip If you want to insert values that require characters or dates, you
need to enclose them in quotes.

Updating Data

You often need to change data in tables. For example, when a user rates your article,
the rating should be reflected in the database. If the rating for an article already exists,
then it needs to be updated. In this section, I will examine the steps to update data in a
database.

Before you update data in a table using the Query Analyzer, you need to select the
database that contains the table you want to update. After you connect to the database,
you can type the SQL commands in the Query window to update table data.
1. Use the UPDATE command to update data in a table using the Query Analyzer. The
syntax of the command for updating data in a table containing three fields is

UPDATE TableName SET FieldOneName = ValueOne, FieldTwoName = ValueTwo,

 FieldThreeName = ValueThree Where (FieldOne = Value1)
2. The TableName value represents the name of the table in which data will be updated.
Replace this value with the appropriate table name.
3. After you specify the name of the table, you need to specify the keyword SET.
FieldOneName, FieldTwoName, and FieldThreeName represent the fields in the table.
Replace these values with the names of the fields in which data will be updated.

Note You do not need to include all of the fields in the table in the
UPDATE statement. The fields that are not specified in the
UPDATE statement will retain their current values.

4. In this example, ValueOne, ValueTwo, and ValueThree represent values that need to
be updated in the database. Replace these values with the values that will be updated in
the database.
5. The WHERE clause determines the rows in which the updated values will be
specified. It contains field names and values. However, these values represent the value
that the specified field of an existing row should contain. The rows that match the criteria
specified in the WHERE clause are updated according to the SET clause. If you omit the
WHERE clause, the values of the specified fields are updated for all of the rows in the
table.

Deleting Data

When there is a redundancy in the data in a table, you might need to delete information.
1. Use the DELETE command in the Query Analyzer to delete data from a table. The
syntax of the command for deleting data from a table is

DELETE TableName Where (FieldOne = ValueOne) AND/OR/NOT (FieldTwo =
ValueTwo)
2. TableName represents the name of the table from which data will be deleted. Replace
TableName with the appropriate table name.
3. After you specify the table, you need to specify the WHERE clause. This clause is
used to determine the rows that need to be deleted from the specified table. If you have
multiple criteria, you can use the AND, OR, and NOT logical operators to select the rows
to be deleted.

§ AND. Use the AND clause to specify deletion for rows in the table that
meet all of the criteria in the WHERE clause.

§ OR. Use the OR clause to specify deletion for rows that meet any of the
criteria in the WHERE clause.

§ NOT. Use the NOT clause to specify deletion for rows that do not meet
the criteria in the WHERE clause.

Tip You can use parentheses to specify two or more criteria and
prioritize the logical operators.

Note If you omit the WHERE clause, all the rows of the specified table
will be deleted.

4. After you have typed the SQL command to delete rows from a specified table, execute
the command. The rows will be deleted from the table.

Retrieving Data

In an ASP.NET application, you often retrieve data from a database and display it on a
form using the SELECT statement. The SELECT statement can accept a parameter, or it
can be run without any specified parameters.

In this section, you will learn to retrieve data from a table in SQL Server using the
SELECT statement.

Retrieving Data Using the SELECT Query

The syntax for a simple SELECT query is

SELECT * FROM TableName

In this syntax, the * keyword signifies that all of the values from all rows of the table are
to be retrieved from the table specified by TableName. However, if you need to retrieve
only specific rows from the table, you can use the following syntax.

SELECT FieldOne, FieldTwo, FieldThree FROM TableName

Notice that a comma separates each field name. This syntax will retrieve the values from
only the specified fields of all rows in the table.

Retrieving Data Using a Conditional Query

To retrieve data from a table conditionally, use the SELECT command with the WHERE
clause. The syntax for a conditional query is

SELECT FieldOne FROM TableName WHERE (FieldTwo > 10)

This syntax specifies that the value in the FieldOne field is to be retrieved from the table
rows in which the FieldTwo value is greater than 10.

Tip You can use logical operators and parentheses with the WHERE
clause to specify multiple conditions.

Understanding Stored Procedures

In an application, many tasks are repetitive. For example, a task might involve canceling
an airline ticket. This task is not only repetitive, but it also involves updating a number of
tables in a database.

If you pass multiple SQL statements from an ASP.NET application to update a database,
you risk increasing the load on the network and introducing errors while updating data.
To prevent these problems, you can call a stored procedure, which includes one or more
SQL statements that can update a database. In this section, you will learn how to create
and execute a stored procedure.

Creating a Stored Procedure

A stored procedure contains the commands that are used to perform a specific task in an
application. These commands can be executed by executing the stored procedure. You
can create a stored procedure in a specific database by selecting the database in which
the procedure is to be created and using the CREATE PROCEDURE command.

The syntax for creating a stored procedure is

CREATE PROCEDURE ProcedureName

//declarations

AS

//variable definitions

BEGIN

//commands

END

In this syntax, ProcedureName specifies the name of the procedure that will be created.
After you specify the name of the procedure, you need to specify the variables that are
required to execute the procedure.

After you have declared the variables that are to be accepted from the user, use the AS
keyword to define variable declaration for the variables accepted from the user and other
variables required by the stored procedure.

After you complete the variable declarations, specify the SQL commands that constitute
the stored procedure. The commands start with the BEGIN keyword. After you have
specified the SQL commands, you need to specify all of the commands required by the
stored procedure. Use the END keyword to indicate that the stored procedure is
complete.

Executing a Stored Procedure

After you create a stored procedure, you can execute it to run all of the statements that
you specified in it. To execute the procedure, select the database in which the procedure
should be run, and then follow these steps.
1. Use the syntax for executing a stored procedure to run the procedure. The syntax for
executing a stored procedure is

EXEC ProcedureName Parameter1, Parameter2
2. Use the EXEC command to execute the procedure. Follow the command with the
name of the procedure that is to be executed. This example specifies that the values
represented by Parameter1 and Parameter2 are to be passed to the procedure. These
values need to be enclosed in quotation marks if they are not numeric values.
3. Execute the stored procedure that was created in the preceding section. Specify the
command in the Query Analyzer window and click on the Execute Query button to run
the stored procedure. The procedure will execute and the result will be displayed in the
Messages tab of the Query Analyzer window.

This completes the discussion on SQL Server basics. In the next chapter, you will be
introduced to the concepts of ADO.NET, one of the core components of data access in
ASP.NET.

Chapter 9: Getting Started with ADO.NET

Overview

You can store data in databases or other data sources, such as spreadsheets and text
files. This data can then be accessed by the various data-centric applications. To access
the data, these applications need to use a data access model. ADO.NET is one such
data access model, designed for Web-based applications. By catering to Web
applications specifically, ADO.NET allows you to implement data access in ASP.NET
applications.

ADO.NET enables you to access data from various data sources. By using ADO.NET as
a data access model, you can easily manipulate and update data. In this chapter, you’ll
learn how to:
§ Utilize the features and architecture of ADO.NET
§ Configure a data adapter

Understanding the Features of ADO.NET

ADO.NET is a highly efficient data access model based on the .NET Framework. It
provides a uniform data access technology for local, client-server, and Web applications.

In this section, I’ll discuss the main features that make ADO.NET an efficient data access
model.

Non-Dependency on a Persistent Connection

An important feature of ADO.NET is that it is not dependent on a persistent connection
with the database. This means that the applications connect to the database only when
they need to access or update data. To understand the importance of this feature, you
should be aware of how most traditional applications access data in a database.

In most of the traditional applications, a connection to the database is established and
then kept open while the application processes data. However, such open connections
might lead to:

§ Intensive use of system resources. The number of open connections
with the database might result in low performance of the application.

§ Limited scalability. A significant requirement of an ASP.NET Web
application is scalability, because the number of users accessing a Web
site might increase tremendously within a short period of time. However,
if connections are perpetually open, the site might no longer remain
scalable.

§ Non-viability. Exchange of data across applications is difficult and not
viable if connected architecture is used. In such a case, the two
components need to be perpetually connected to share data between
them.

Open connections are not feasible, particularly for ASP.NET Web applications where the
components are disconnected. In such applications, when a Web browser requests a
Web page, the Web server sends the page after processing the request. Then, the
server disconnects from the browser until it receives the next request. Therefore, open
connections to databases are not required because it cannot be determined whether the
client (the Web browser, in this case) needs any further access to data.

The architecture of ADO.NET promotes disconnected data architecture, thereby making
it an efficient data access model.

Data Commands

Working with a database can involve various operations. These operations include
reading or writing data and creating or modifying columns or tables in the database.
Another operation that you commonly perform in a database is the calculation of a total
or average by using aggregate functions. You perform these operations by executing
SQL statements or stored procedures.

When you use ADO.NET, you can perform database operations using data commands.
The data commands comprise a SQL statement or a stored procedure. This means that
you create a data command and then configure it either with the SQL statement text or
the stored procedure name that is used to perform the desired operation.

If you want to perform multiple database operations, you need to use multiple data
commands—a separate data command for each operation. In addition, you can include
parameters in data commands. Such parameters enable you to create parameterized
queries.

Datasets

There are situations when an application needs to display data on a Web form or further
process the data. Regardless of the way in which the application needs to use the data,
it has to first retrieve the data from a database. This data can be a record or a group of
records. Moreover, records might be stored in multiple tables in the database.

In such situations, the application needs to access the database multiple times to
process each record. As you have learned, this is not feasible in the case of
disconnected architecture. However, when you use ADO.NET, you have an alternative in
the form of a dataset.

An ADO.NET dataset temporarily stores records that are retrieved from the database. It
is a virtual miniature database that enables you to work with the data stored in it just as
you would work with data in the database.

A dataset can be made up of a single table or multiple tables. If the dataset contains
multiple tables, it also stores information about the relationships that exist between them.
Moreover, a dataset can also include information about the constraints set for the tables.

To put it simply, a dataset, like a database, consists of tables that contain data,
constraints, and relationships. Therefore, when an application works with data in a
dataset, it has access to all of the elements of the data source and it doesn’t need to
maintain a connection with the database. If you want to make any modification to the
data, you can do so in the dataset itself. These changes can later be written into the
database easily.

Although data retrieved from a database is stored in a dataset, the task of moving the
data between the database and the dataset is done using data adapters. A data adapter
usually contains four commands that are related to Select, Insert, Update, and Delete
statements. You will learn about these four commands later in this chapter. One or more
of these data commands contained in a data adapter is used to load data in a table in a
dataset and update the corresponding database table with the changes.

Another significant point that you should note is that a dataset is independent of the
database or data source from which it retrieves the data. Since the dataset does not
maintain any direct relationship with the original source, it is possible to store data from
various data sources in a single dataset.

Support for XML

As you know, the data from a database needs to be transferred to a dataset, and then
from the dataset to various other components. ADO.NET uses XML as the data format
for such a transfer.
XML is an industry-accepted standard, approved by W3C (World Wide Web
Consortium). It is used to store data in a text format. XML is commonly used to exchange
data between applications based on different platforms.

Because XML is an industry-accepted data format and is text-based, ADO.NET support
for XML makes ADO.NET the preferred data access model. Because conversion of data
into and out of XML is automated, you do not need to have any knowledge of XML to
work with data in ADO.NET.

ADO.NET uses XML as its internal data format. As a result, when you use ADO.NET,
XML is used as the format for any transfer of data. If you want to store data in a file, it is
stored as XML. You can also use an XML file as the data source for creating a dataset.

Now that you know about the main features of ADO.NET, I’ll discuss the ADO.NET
architecture.

Understanding the ADO.NET Architecture

The ADO.NET architecture consists of two main components that are designed to enable
data access and data manipulation. These two components are the dataset and the
.NET data provider.

In the following sections, I will discuss each component of the ADO.NET architecture
separately.

Datasets

A dataset acts as a primary component of the ADO.NET disconnected architecture. A
dataset in ADO.NET is represented by the DataSet class, which is available in the
System.Data namespace.

The tables contained by a dataset are represented by DataTable objects. The DataTable
objects contain DataRow and DataColumn objects that represent the rows and columns
of a table, respectively.

The .NET Data Provider

The .NET data provider is another essential component of the ADO.NET architecture. It
serves as a bridge between an application and the data source because it enables an
application to connect to the data source, execute commands, retrieve results, and later
update the data source with the changes. The .NET Framework currently provides two
.NET data providers.

Note A namespace refers to a naming scheme. It is used for logical
grouping of related types, such as classes and structures. In the
.NET Framework, namespaces follow a hierarchical, dot-syntax
naming scheme. Since ADO.NE T is a data access model, it uses
data-related namespaces for accessing the data-related classes.
The main namespace used by ADO.NET is System.Data. When
you work with ADO.NET, you need to refer to this namespace in
your applications.

§ SQL Server .NET data provider. This data provider is designed
specifically for Microsoft SQL Server 7.0 or later databases. The
System.Data.SqlClient namespace stores the classes of this data
provider. You need to include this namespace in your applications when
you use the SQL Server .NET data provider. The names of the classes of
the SQL Server .NET data provider begin with the prefix “Sql.”

§ OLE DB .NET data provider. This data provider enables interaction with

any OLE DB data source. It provides support for various OLE DB
providers, such as SQLOLEDB (SQL OLE DB provider),
Microsoft.Jet.OLEDB.4.0 (Jet OLE DB provider), and MSDAORA (Oracle
OLE DB provider). The System.Data.OleDb namespace stores the
classes of the OLE DB .NET data provider. You must include this
namespace in your applications when you use the OLE DB .NET data
provider. The names of the classes of this provider begin with the prefix
“OleDb.”

The .NET data providers consist of four core components that enable you to manipulate
data and provide quick, read-only, and forward-only data access. The following sections
discuss these four components.

Connection Object

To enable an application to interact with a data source, you need to first establish a
connection with the data source. To accomplish this, you use the Connection object.

ADO.NET provides you with the following two Connection objects.
§ SqlConnection. The SqlConnection object enables you to directly

create and manage a connection to a Microsoft SQL Server 7.0 or
later database. The SqlConnection class, which indicates an open
connection with a Microsoft SQL Server database, is stored in the
System.Data.SqlClient namespace. Note that it is not possible to
inherit the SqlConnection class.

§ OleDbConnection. The OleDbConnection object enables you to
create and manage a connection to a data source that is accessible
through OLE DB. These data sources can be of various types, such as
databases, spreadsheets, or text files. The OleDbConnection class,
which indicates an open connection with the data source, is stored in
the System.Data.OleDb namespace.

Both the SqlConnection and OleDbConnection classes include several properties,
methods, and events. The members of both of the classes are almost identical. The most
commonly used members of these classes are

§ ConnectionString property. This property provides information
necessary to create and manage a connection with the data source.
Such information is in the form of a string that consists of several
clauses and their values. The most important parameters of a
connection string are Provider (which denotes the name of the data
provider), Data Source (which denotes the server name), Initial
Catalog or Database (which denote the database name), User ID or
UID (which denote the user name to log on), and Password or Pwd
(which denote the password).

Note When you use the SqlConnection object, the only data provider
that you use is SQL Server, so the SqlConnection object does not
support the Provider clause.

§ Open method. This method opens a connection to the data source by
making use of the information in the ConnectionString property.

§ Close method. This method closes a connection. Closing a
connection after you perform the desired operations is important to
minimize the use of valuable system resources.

Command Object

After you connect to the database, you need to process requests that are in the form of
database commands and then return results for these requests. The requests might
relate to retrieving data, modifying data, or executing stored procedures.

You can use the following two command objects to retrieve data.
§ SqlCommand. The SqlCommand class enables you to create a data

command object. This class, stored in the System.Data.SqlClient
namespace, denotes a Transact-SQL statement or a stored procedure
to be executed against a Microsoft SQL Server database.

§ OleDbCommand. The OleDbCommand class enables you to create a
data command object. This class, stored in the System.Data.OleDb
namespace, denotes a SQL statement or a stored procedure to be
executed against a data source.

DataReader Object

When you want to read data sequentially, you can use the DataReader object. This
object enables you to retrieve a read-only, forward-only data stream from the data
source. When you use the DataReader object, the performance of the application
improves, and the system overhead is considerably reduced. This is because at any
given time, there is only one row of data in the memory.

There are two data reader objects, including:
§ SqlDataReader. The SqlDataReader class provides you with a data

reader object for reading forward-only data from a Microsoft SQL
Server database.

§ OleDbDataReader. The OleDbDataReader class provides you with a
data reader object for reading forward-only data from any data source.

DataAdapter Object

To work with a dataset, you need to transfer data from the data source to the dataset
and later transfer it back to the data source to reflect the changes. To enable this
communication between the dataset and the data source, ADO.NET provides the
DataAdapter object.

If you want to use a data adapter, you need to first create and configure it. You have an
option to configure the data adapter when you create it or at any later stage. When you
configure a data adapter, you actually specify the SQL statements or stored procedures
to be used to read and write data to the data source.

The two DataAdapter objects that ADO.NET provides are
§ SqlDataAdapter. This object is used for communication between a

dataset and a Microsoft SQL Server 7.0 or later database.
§ OleDbDataAdapter. This object is used for communication between a

dataset and any data source accessible through OLE DB.

Both the SqlDataAdapter and OleDbDataAdapter classes include several properties,
methods, and events. The members of both classes are almost identical. The most
commonly used members are

§ SelectCommand property. This property enables you to select and
retrieve data from the data source.

§ InsertCommand property. This property allows you to insert data in
the data source.

§ UpdateCommand property. This property enables you to update
data in the data source.

§ DeleteCommand property. This property allows you to delete data
from the dataset.

Note The SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand properties are instances of the Command class.
Another point to remember is that in the case of
OleDbDataAdapter, these properties refer to either a SQL
statement or a stored procedure, whereas in the case of
SqlDataAdapter, they refer to a Transact-SQL statement or a
stored procedure.

§ TableMappings property. This property retrieves a collection that
represents mapping between a table in the data source and the
corresponding data table in the dataset.

§ Fill method. This method fills the dataset with data retrieved from the
data source. When the DataAdapter object calls this method, it uses
the SelectCommand property to select and retrieve the data with
which the dataset will be filled.

§ Update method. This method updates the data source with the
modifications made to the data in the dataset. When the DataAdapter
object calls this method, it uses the InsertCommand,
UpdateCommand, and DeleteCommand properties for inserting,
updating, and deleting data, respectively.

Now that I’ve explained the core components of the .NET data providers, I will discuss
the steps to use these components on a Web form.

Configuring a Data Adapter

Visual Studio .NET provides the Data Adapter Configuration wizard, which helps you
configure a connection and a data adapter to a data source. In this section, I will
describe the utility of the wizard and the steps to run the wizard to connect to a data
source.

Introducing the Data Adapter Configuration Wizard

The Data Adapter Configuration wizard provides you with simple steps to quickly create
and configure a data adapter. The wizard performs several tasks for you. It will

§ Create a new connection to a database . You can create a new
connection to a database using the Data Adapter Configuration wizard.

§ Use an existing connection. If you have already configured a
connection to a data source, you can use the connection while
configuring a data adapter.

§ Create SQL queries. You can use the Query Builder to create queries
that can be used for the Select, Insert, Update, and Delete commands of
a data adapter.

Running the Wizard

To use the Data Adapter Configuration wizard, first create a form on which you want to
run the wizard. Alternatively, open an existing form. Follow these steps to run the wizard.
1. Click on a DataAdapter object (either OleDbDataAdapter or SqlDataAdapter) on the
Data tab of the Toolbox and drag it to the form. An instance of the object will be created,
and the first dialog box of Data Adapter Configuration wizard will open.
2. Click on Next. The Choose Your Data Connection dialog box will open.

3a. Choose a connection from the list if you want to use an existing connection.
OR
3b. Click on New Connection if you want to create a new connection. The Data Link
Properties dialog box will open.

4. On the Connection tab, specify the server name, user name, password, and database
name.
5. Click on Test Connection. A message will appear if the connection is successfully
established.

6. Click on OK. You will be returned to the Data Link Properties dialog box.

7. Click on OK. You will be returned to the Choose Your Data Connection dialog box.
8. Click on Next. The Choose a Query Type dialog box will open. This dialog box
provides you with three options to specify the type of the query. You can specify whether
you want to use SQL statements, create a new stored procedure, or use an existing
stored procedure to access the database. By default, the Use SQL Statements option
will be selected.
9. Click on Next. The Generate the SQL Statements dialog box will open. This dialog box
enables you to specify the Select statement that will be used to automatically create the
Insert, Update, and Delete statements.

10a. Type the Select statement in the box.
OR

10b. Click on Query Builder if you want to design the query. The Add Table dialog box
will open.

11. Click on the name of the table you want to use in your query, and then click on Add.
The columns of the selected table will appear in the Query Builder.

12. After you add all of the tables that you want to use in your query, click on Close. The
Add Table dialog box will close.
13. Click on the check box for each column that you want in your query. The selected
queries will be designed in the Query Builder.
14. Click on OK. The Query Builder will close, and the query will appear in the Generate
the SQL Statements dialog box of the wizard.

15. Click on Next. The View Wizard Results dialog box will open. This dialog box lists the
tasks performed by the wizard.

16. Click on Finish. The wizard will be completed and the configuration settings will be
applied to the data adapter. An instance of the connection and data adapter objects will
appear on the form.

The preceding steps used the Data Adapter Configuration wizard to configure a data
adapter for the application. You can also configure a data adapter for your application by
dragging a table from the Server Explorer to the form. See Chapter 10, “Managing Data
from ASP.NET Applications,” for more information on this technique.

After you complete the configuration of the data adapter using the Data Adapter
Configuration wizard, you can generate a dataset by following these steps.
1. Right-click on the instance of the data adapter on the form. A shortcut menu will
appear.
2. Click on Generate Dataset. The Generate Dataset dialog box will open.
3a. Click on Existing and select the name of a dataset if you want to use an existing
dataset.
OR
3b. Click on New if you want to generate a new dataset.
4. Click on OK. The dataset will be generated, and an instance of the dataset object will
appear on the form.

This completes the discussion on ADO.NET. In the next chapter, you will learn how to
use the components of the ADO.NET architecture to enable data access in an ASP.NET
application.

Chapter 10: Managing Data from ASP.NET
Applications

Overview
In Chapter 9, “Getting Started with ADO.NET,” you were introduced to the features and
advantages of the ADO.NET architecture. ADO.NET provides data access components
that are used for managing data in databases.

In ASP.NET, you can use the data access components that are provided by ADO.NET to
data-enable your Web applications. By data-enabling your Web applications, you can
add, update, retrieve, and delete data in data sources. This chapter describes the steps
to data-enable your application by interacting with a SQL Server database. In this
chapter, you’ll learn how to:
§ Add data to SQL Server databases
§ Retrieve data from SQL Server databases

Adding Data to SQL Server Databases

Adding data to a database is a three-step process. First, you need to identify the table in
the database to which you want to add data. Next, you need to design the form that will
accept information from users. Finally, you need to use the ADO.NET data components
to add data to the database.

In this section, you will learn to perform these three steps to add data to a database.

Designing a Database Table
You can create a database and add a table to it using SQL Server Enterprise Manager,
which is the administration tool for SQL Server. (See Chapter 8, “SQL Server Basics,” for
more information on creating a database and adding a table to it.)

The ArticleDetails table includes the following fields:
§ ArticleID. The ArticleID field is used to uniquely identify an article in the

ArticleDetails table. This field is a primary key for the table and is
automatically generated when a new article is added to the table.

§ ArticleTitle. The ArticleTitle field stores the title of the article, as
specified by the user.

§ Author. The Author field stores the name of the author of the article. As

you will see later, this value is automatically retrieved from the user’s
Windows 2000 user ID.

§ ArticleDescription. The ArticleDescription field stores a brief description
of the article.

§ ArticleURL. The ArticleURL field stores the address of a Web site to
which the author of the article would like to refer the readers.

§ Cat1–Cat5. The Cat1 to Cat5 fields store Boolean values that represent

the categories to which the article belongs. For example, if the value of
Cat1 is True, the article belongs to the first category. An article can
belong to one or more categories.

§ DiffLevel. Each article is rated in terms of difficulty level. An article can
be for beginning, intermediate, or advanced users. The DiffLevel field
stores an integer value that represents the difficulty level of the article.

§ Attachments and Picture . The Attachments and Picture fields store

Boolean values to specify whether the author has included an
attachment and image file with the article.

§ LastUpdate. The LastUpdate field stores the date and time when the
article was last updated.

Designing a Form to Accept Information

To add data to the ArticleDetails table, I have added the AddNew.aspx form to an
ASP.NET Web application. The form includes fields that correspond to each field in the
ArticleDetails table. I have also added validation controls to the form to ensure that the
user has specified valid information in all fields of the form.

Inserting Records into the Database Table

After you validate the data specified by a user, you can add the data to a database.
Adding data to the database is a three-step process. First, you need to configure a data
adapter for the form. Next, you need to configure the InsertCommand of the data
adapter. Finally, you need to write the code to add the record to the database. The
following sections will examine these steps one by one.

Adding a Data Adapter to the Form

You can use the SqlCommand object or the SqlDataAdapter object to add data to a
database. When you use the SqlDataAdapter object, you can use the InsertCommand
property of the object to specify the query for inserting records into the database.
I will use the SqlDataAdapter object to add data to the database. You can add the
SqlDataAdapter object to your form using the Data Adapter Configuration wizard. (See
Chapter 8, “SQL Server Basics,” for more information on using the Data Adapter
Configuration wizard.)

However, Visual Studio .NET offers another easy way to add the data adapter to your
form. You can simply drag the table for which you want to configure the data adapter
from the Server Explorer to the form.
1. Open the form for which you want to configure the data adapter. The form will open in
Design view.
2. Click on View. The View menu will appear.
3. Click on Server Explorer. The Server Explorer will appear.
4. Double-click on Servers. The name of the local computer will appear in the Servers
list.
5. Double-click on the name of the local computer. The components of the computer that
are accessible from Visual Studio .NET will appear.

6. Double-click on SQL Servers. The SQL servers that are registered on the computer
will appear.
7. Double-click on the server on which the database for the application is installed. A list
of databases available on the server will be displayed.

8. Double-click on the name of the database to be used in the application. The tables,
views, and stored procedures in the database will appear.
9. Double-click on the Tables option. The tables available in the database will appear.

10. Press and hold the mouse button on the ArticleDetails table and drag it to the form.
The SqlConnection1 and SqlDataAdapter1 controls will be added to the form.

Configuring the Data Adapter

After the SqlConnection1 and SqlDataAdapter1 controls have been added to the
component tray of the form, you need to configure the InsertCommand property of the
SqlDataAdapter1 control. To configure the property using the Properties window,
perform the following steps.
1. Right-click on SqlData Adapter1. A shortcut menu will appear.
2. Click on Properties. The Properties window for the control will appear.

3. Click on the plus (+) sign next to the InsertCommand property. The details of the
InsertCommand property will appear.

4. Move the mouse pointer to the CommandText property of InsertComamnd. The SQL
query that is associated with InsertCommand will appear as a tool tip. Notice that you
don’t need to change the command text here, because the query suits your
requirements.

Now that you have ensured that the data adapter control is configured, you can use the
data adapter to add data to the database.

Coding the Form to Add Data

The code to add a record to the database needs to be written in the Click event of the
Submit button. In the AddNew.aspx form, you need to perform the following tasks while
adding data to the database.
1. Retrieve data from the controls on the form and assign these values to the parameters
of InsertCommand.
2. Execute the query on the database to retrieve updated data in the database and the
ID of the article that is added.
3. Use the ID of the article to save the attachments of the article.

To assign values to the parameters of the InsertCommand property, you need to know
what the parameters are. To view the parameters of the InsertCommand property, follow
these steps.
1. Click on the Ellipsis button in the Parameters property of InsertCommand. The
SqlParameter Collection Editor dialog box will open.

2. View the parameters expected by InsertCommand. Make a note of these parameters,
because you need to refer to them while coding your application.

3. Click on OK to close the SqlParameter Collection Editor dialog box.

The definition of the Click event of the Submit button is automatically created. In the
definition, write the code for assigning values to the parameters of InsertCommand. In
this example code, the following logic has been used to add values to parameters.

§ The third parameter, which represents the author of the article, is
retrieved from the user’s Windows 2000 domain account by using the
Context.User.Identity.Name property.

§ The fourth parameter, which represents the optional URL that the
author of the article can specify, is retrieved from the txtURL text box.

§ Parameters 5–9 are set depending on the options that the user has
selected in the optCategory CheckBoxList. If an option is checked in
the CheckBoxList control, the value of the corresponding parameter is
set to 1. Otherwise, the value is 0.

Note You can retrieve the user ID by using the
Context.User.Identity.Name property only when you have disabled
anonymous authentication on IIS. See Chapter 22, “Securing
ASP.NET Applications,” for more information on anonymous
authentication.

§ The current date and time are assigned to the thirteenth parameter,

which is the last parameter of the InsertCommand query.

After assigning values to parameters, you run the query. You will notice that the query
statement returns the article ID of the article that is added to the database. You need to
retrieve this value so you can save the attachments of the article using the ID.

After you store details of the article in the database, you can direct the user to another
Web form that displays the details of the article that has been added to the application. In
the MySourceCode application, I redirect the user to the Article.aspx form, which
displays the details of the article that the user has added to the Web site. While
redirecting the user to the Article.aspx form, I have added the article ID as a query string
parameter using the UrlEncode method of the HttpUtility class.

Retrieving Data from SQL Server Databases

To retrieve data from the data source, identify the table from which you want to retrieve
data and use the ADO.NET data objects to retrieve data from the database.

Tip Make sure that you have created an Articles folder in the root
directory of your Web application.

In this section, I will explain the steps to retrieve the details of an article that you added
to a database in the previous section. You will first learn to design the Article.aspx form,
which displays details of the article after retrieving them from the data source. Next, you
will implement the data access logic.

Designing the Form to Display Data

The Article.aspx form is essentially composed of Label and Literal controls that will be
used to display information retrieved from the database. Literal controls are similar to
Label controls, but they allow you to format data using HTML tags. For example, if you
specify ASP.NET for the Text property of the Literal control, the control will
display ASP.NET in bold font.

The following list explains a few important controls that I have added to the form.
§ lnkCode. The lnkCode Hyperlink control displays a hyperlink on the form

if the author of the article has included the article’s source code.
§ lblThankyou. The lblThankyou label displays a message to the user

after the user has rated an article.
§ imgLabel and ArtImg. The imgLabel and ArtImg controls display an

image file associated with a control.
§ txtArtDoc. The txtArtDoc Literal control displays the documentation that

accompanies new articles added to the Web site.

Tip The lblThankyou label is displayed after the user has rated an

article. To enable users to rate an article, you should create a
composite control. Refer to Chapter 13, “Creating a Composite
Control in ASP.NET,” for more information on creating composite
controls.

After you design the form to display data, proceed to the next section, which describes
the steps to retrieve data from the database and display it on the form.

Displaying Data on a Form

To retrieve and display data on a form, you need to use the same logic that you used for
adding data to the database. The only difference is that you need to use the
SelectCommand instead of the InsertCommand.

Drag the ArticleDetails table from the Server Explorer to the form. The SqlCommand1
and SqlDataAdapter1 controls will be configured for the form.

2. Select the SqlDataAdapter1 control and open the Properties window.
3. Click the Ellipsis button for the CommandText Property of the SelectCommand. The
Query Builder dialog box will open.

4. You need to retrieve the details of only one article for which the article ID has been
passed in the query string. Therefore, append the phrase “where ArticleID=@ArticleID”
in the SQL query.

5. Click on OK. The Query Builder dialog box will close.
6. Double-click on the form. The form will open in the Code Editor.
7. Write the code for the Load event of the form. Notice that I first check whether the
query string is valid. If the query string is not valid, the user is redirected to the
Default.aspx page, which is another page of the Web application. If the query string is
valid, I use the GetDocumentation and GetArticle methods to retrieve the details of the
article.

8. Write the code for the GetDocumentation method. This method reads the contents of
the article from a file and displays them in a Literal control.

Tip The Article.aspx form uses the StreamReader, File, and

sqlDataReader classes. These classes are available in the
System.IO and System.Data.SqlClient namespaces. Therefore, you
should import the System.IO and System.Data.SqlClient
namespaces into your application.

9. Write the code for the GetArticle method. The logic implemented by this code is not
much different than the logic to add records to the database. The only difference is that
the SelectCommand method is used to retrieve records, and the details of the article
(which are retrieved in the object of the SqlDataReader class) are displayed on the form.

Running the Application

After you write the code to add and retrieve records from the data source, run the
application to check its output.

You now have learned how to add and retrieve data from a database. The next chapter
explores the ways to format and display data using data binding server controls.

Chapter 11: Displaying Data Using Data
Binding Server Controls

Overview

Most often it is insufficient to retrieve data from a database and display it directly on a
form. You generally need to format the data before displaying it on the form. Formatting
data not only ensures that your form is visually appealing; it also ensures that the data is
well organized. On a well-organized form, only the information that is relevant to the user
is displayed at any given time. For example, you don’t need to display all of the details of

books available on your Web site. Instead, you can provide links to each book so the
user can click on a link to explore more about a specific book.

ASP.NET provides a number of data binding server controls that are highly
customizable. After you retrieve data from a data source, you can bind data to these
server controls and display it on a form in a variety of formats. This chapter includes a
detailed explanation about how to use each server control. In this chapter, you’ll learn
how to:
§ Use the DataGrid control
§ Use the Repeater control
§ Use the DataList control

Using the DataGrid Control

The DataGrid control is the simplest of all the data binding controls. You can use the
DataGrid control to display data in a tabular format. In this section, I will explain the steps
to add and customize a DataGrid control for a form.

Displaying Data in a DataGrid Control

The DataGrid control is available in the Web Forms tab of the Toolbox. To demonstrate
the use of the DataGrid control, I have added a Web form, ViewOwn.aspx, to the
MySourceCode application. The form is used to display the details of articles that have
been uploaded by a user who is logged on to the Web application.

Adding a DataGrid Control to a Form

To add a DataGrid control to a form, add a Web form to an application and then follow
these steps.
1. Click on the DataGrid control in the Toolbox. The control will be selected.

2. Press and hold the mouse button and drag the control to the form.

3. Right-click on the control. A shortcut menu will appear.
4. Click on Properties. The Properties window will appear.
5. Change the Width property to 100%. The DataGrid control will occupy the entire width
of the screen.

6. Optionally, change the ID property of the control so you can recognize it easily.

Changing the SelectCommand Property of a Data Adapter

After you add the SqlDataAdapter and SqlConnection controls to the form, you need to
change the SelectCommand property of the SqlDataAdapter control, because you don’t
need to retrieve all of the records from the database.
1. Click on the SqlDataAdapter1 control.
2. In the Properties window, click on the plus (+) sign next to the SelectCommand
property. The contents of the SelectCommand property will be displayed.

3. Type SELECT ArticleID, ArticleTitle, Author, ArticleDescription, LastUpdate
FROM ArticleDetails WHERE (Author = @Aid) as the query for the CommandText
property and press Enter. The Regenerate Parameters message box will appear.

4. When you change the query associated with a command, the parameters expected by
the query might change. To synchronize the parameters expected by the query with the
command text, click on Yes. The Microsoft Development Environment dialog box will
appear.

5. Click on Yes. The new query that you specified will be applied to the SelectCommand.

Generating a Dataset

After you configure the data adapter control, you need to generate a dataset to store
data that is retrieved from the database.

Note I did not use a dataset in Chapter 10, “Managing Data from
ASP.NET Applications,” because I did not need to store data in the
application. I simply retrieved the data and presented it to the user.
When you store data in the application, you need to use a dataset.

1. Click on the SqlDataAdapter control that was added to the form. The control will be
selected.
2. Click on Data. The Data menu will appear.
3. Click on Generate Dataset. The Generate Dataset dialog box will open.

4. Retain the default options, which allow you to create a new dataset, add a table to the
dataset, and add the dataset to the component designer. Click on OK. A new DataSet
control will be added to your application.

Binding Data to the DataGrid Control

Now you are ready to use the DataGrid control. A DataGrid control includes a
DataSource property that expects a DataView object as the data source.

When you configured the DataSet control in the preceding steps, you added the
ArticleDetails table to the dataset. This table has a default view associated with it that
can be assigned to the DataSource property of the DataGrid control. The steps to assign
the default view of the table to the DataGrid control follow.
1. Double-click on the ViewOwn.aspx form to open the Code Editor.
2. Now you need to write the code in the Load event of the form. Retrieve the user name
of the user who is currently logged on.

3. Assign the user name as a parameter to the SelectCommand and open the
connection to the data source.
4. Execute the Fill method of the SqlDataAdapter class to retrieve details of articles
uploaded by the user and add these details to the dataset.
5. Assign the default view of the dataset to the DataGrid control and call the DataBind
method to display data on the form.

Customizing a DataGrid Control

The DataGrid control presents many customization options. For example, you can
change the appearance of the DataGrid control to make it blend with the color scheme of
your Web application. In this section, I will show you how to customize the DataGrid
control by changing its properties.

Changing the Appearance of the DataGrid Control

You can change the appearance of a DataGrid control using the Properties window.

1. Click on the DataGrid control on the form and open the Properties window.
2. Change the style of the control. In this control, I have changed the CellPadding value
to 3, the Font to Verdana, and the BackColor of the HeaderStyle property to #DFA894.

Note The HeaderStyle property specifies the style of the header row in

the DataGrid control.

I have configured only a few properties of the DataGrid control. You can configure other
properties in the same manner. Take a moment to experiment with the properties, if
you’d like.

Sorting Data in a DataGrid Control

When you enable sorting in a DataGrid control, each column in the header row of the
DataGrid control appears as a hyperlink. When users click on a hyperlink, the data in the
DataGrid control is sorted by the selected column.
1. Double-click on the AllowSorting property in the Properties window. The value of the
property will change from False to True.

2. Switch to the Code Editor and select the DataGrid control from the list of controls. The
control will be selected.
3. From the list of events supported by the control, select SortCommand. An event
handler will be generated for the SortCommand event of the DataGrid control.

4. The SortExpression property specifies how the data in the DataGrid control should be
sorted. You can use the SortExpression property to sort the data in a DataView object
and associate the object with the DataGrid control, as shown here.

Using the Repeater Control

The Repeater control is a customizable control that offers a high degree of flexibility for
data presentation. In this section, you will examine the steps to configure a Repeater
control for displaying data on a Web site.

Displaying Data in a Repeater Control

To display data in a Repeater control, you need to define the format for displaying data
and then populate the Repeater control with data. In this section, I will describe the steps
to configure the Repeater control by performing these tasks.

Defining the Format for Displaying Data

As you can see, the Repeater control does not provide a default way to present data.
You need to configure how data should be displayed in the control. However, the
Repeater control does provide templates that specify how data should be displayed by
the control. At run time, when a data view is bound to the Repeater control, the template
is used to determine how each record in the data view should be displayed on the form.

The steps to configure the Repeater control follow.
1. Click on the HTML tab to open the HTML view of the Web form.

2. Locate the HTML code that corresponds to the Repeater control.
3. Add the definition of the ItemTemplate template. The ItemTemplate specifies how
each item in the Repeater control should be formatted. I have used the data binding
syntax to bind the ArticleID, ArticleTitle, and Author fields of the data source to the
ItemTemplate.

4. Switch back to the Design view of the form. The Databound fields that you created in
the HTML view are displayed here. Data will be populated in these fields at run time.

Populating a Repeater Control with Data

To populate the Repeater control with data, I used a simple logic. First, I added a
connection to the form. The connection can be opened whenever data needs to be
retrieved from the data source. Next, I used the SqlCommand object to configure the
search queries for different search parameters. Finally, I passed the SqlCommand object
to a function that executes the command by using the connection and displays the result
in the Repeater control. These steps are detailed below.
1. The quickest way to add a connection to the form is to drag the connection object from
the Server Explorer to the form.

2. After you add a connection to the form, switch to the Code Editor.
3. Create a SqlCommand object for each search parameter and execute the query to
retrieve the result in an SqlDataReader object.
4. Bind the SqlDataReader object to the Repeater control.

Customizing the Repeater Control

You can customize the Repeater control the same way you customize other data binding
server controls. Since the output is specified in HTML format, the output entirely depends
upon the HTML tags that you have used to configure the control. Thus, the output is
already customized!

However, you can customize the output further by using the AlternatingItemTemplate
template. The AlternatingItemTemplate specifies the formatting of alternate items in the
Repeater control. Using this template improves the readability of data because it is often
easier to read adjacent entries in a control when they follow different color patterns or
when they are demarcated.

Using the DataList Control

The DataList control is similar to the Repeater control. However, it is more flexible than
the Repeater control because it enables you to add other controls to the ItemTemplate
and respond to events generated by these controls.

In this section, I will configure a DataList control on the UserReviews.aspx page that
enables users to submit their comments on articles in a Web application.

Designing the DataList Control

To design the DataList control, follow these steps.
1. Drag the DataList control from the Toolbox to the form.
2. Switch to the HTML view of the control and add the code for the HeaderTemplate and
ItemTemplate of the control.

3. In the ItemTemplate of the DataList control, add a LinkButton control. When a user
clicks on a command button in the DataList control, the DataList control can display the
data in a SelectedItemTemplate template. So, you should specify a style for the
SelectedItemTemplate.

Note The HeaderTemplate is used to display the header row in the
DataList control.

Implementing the Programming Logic

The programming logic of the application involves retrieving data from the data source
and displaying it in the DataList control.

Before you implement the programming logic of the application, add the
SqlDataAdapter1 and SqlConnection1 controls to the form by dragging the
UserComments table from the Server Explorer to the form. Type the SelectCommand
query of the SqlDataAdapter1 control as SELECT PostID, ArticleID, Sender, Posted,
Subject, Message FROM UserComments where ArticleID=@id.

This completes the discussion of displaying data in data binding server controls. In the
next chapter, you will learn how to convert a Web form into a user control and use the
control on a number of Web forms.

Chapter 12: Creating a User Control in
ASP.NET

Overview

Often you need to replicate the same functionality on more than one Web form. For
example, a set of controls might be used to rate a Web form. Instead of adding the same
controls to each form one by one, you can create a user control and add it to all of the
Web forms that require the functionality.

This chapter discusses the steps to create a user control and use the control on a Web
form. In this chapter, you’ll learn how to:
§ Convert a Web form into a user control
§ Add a user control to a Web form

Converting a Web Form into a User Control
To create a user control in ASP.NET, you need to create a Web form and then convert it
into a user control. In this section, I will demonstrate the steps to convert the
UserReviews.aspx form into a user control. See Chapter 11, “Displaying Data Using
Data Binding Server Controls,” for more information on the UserReviews.aspx form.

Removing HTML Tags

The first step to convert a Web form into a user control is to remove the <HTML>,
<BODY>, and <FORM> tags from the Web form. The tags are not required in the user
control because the Web form to which you will add your user control will already have
these tags, and duplicating tags on a Web form will lead to errors.

To remove the <HTML>, <BODY>, and <FORM> tags from the Web form, follow these
steps.
1. Open the form that you want to convert to a user control.
2. Click on the HTML tab to switch to the HTML view of the form.

3. Delete the <HTML>, <BODY>, and <FORM> tags from the form.

After you delete the tags, you need to change the file extensions and page directives.
Read on to find out how to change these items.

Renaming Web Form Files

User controls have a default extension of .ascx. You need to rename the Web form files
from .aspx to .ascx. To change the extension of Web form files, follow these steps.
1. Click on View. The View menu will appear.
2. Click on Solution Explorer. The Solution Explorer will appear.
3. Right-click on the name of the file that you want to convert into a user control. A
shortcut menu will appear.

4. Click on Rename.
5. Change the extension of the file from .aspx to .ascx. A message will appear, notifying
you that the file might become unusable.
6. Click on Yes. The extension of the file will change from .aspx to .ascx.

After you change the extension of the file to .ascx, it is a user control. Therefore, from
this point forward, I will refer to it as a user control, not a Web form!

Changing Page Directives

A Web form is derived from the System.Web.UI.Page class. However, a user control
needs to derive from the System.Web.UI.UserControl class. You also need to change
the @ Page directive on the page to @ Control. The following steps accomplish these
tasks.
1. Set the @ Page directive in the HTML view of the Web form to @ Control. Also,
change the extension of the code-behind file from .aspx to .ascx.

2. Switch to the Design view of the form and double-click on the form. The code-behind
file for the control will open.
3. Locate the class declaration and change the base class to
System.Web.UI.UserControl.

You have completed the steps to create a user control. Now it’s time to add this control
to a Web form and see how it works.

Adding a User Control to a Web Form
Adding a user control to a Web form and instantiating it is an extremely simple task. In
this section, I will instantiate the user control that was created in the previous section to a
Web form and test the control by running the form.

Instantiating the Control

To instantiate a user control on a Web form, follow these steps.
1. Open the Solution Explorer.
2. Double-click on the form to which you want to add the user control. The form will open
in Design view.
3. Click on the control that you want to add to the form. The control will be selected.

4. Press and hold the mouse button and drag the control to the location on the form
where you want to place it.

Testing the Application

This completes the discussion on creating user controls. In the next chapter, you will
learn how to create composite controls. Although the end objectives of the two types of
controls are similar—replicating functionality on a number of controls—they differ
significantly in the manner in which they are created and used on a form.

Chapter 13: Creating a Composite Control in
ASP.NET

Overview
In Chapter 12, “Creating a User Control in ASP.NET,” you learned how to create user
controls in ASP.NET. Composite controls are another category of controls in ASP.NET;
they are a combination of one or more controls that are compiled into a DLL (Dynamic
Link Library) file. Composite controls can be used like the other controls that are
available in Visual Studio .NET.

To create and use composite controls in Visual Studio .NET, you need to create a class
library and import it into your ASP.NET application. This chapter describes the steps to
do so in detail. In this chapter, you’ll learn how to:
§ Create a composite control
§ Add the composite control to a Web form

Creating a Composite Control

To create a composite control, you need to create a class library project and code the
functions of the composite control.

Creating a Class Library Project

To create a new class library project, launch Visual Studio .NET and follow these steps.
1. Click on File. The File menu will appear.

2. Move the mouse pointer to New. The New submenu will appear.
3. Click on Project. The New Project dialog box will open.
4. Click on the Visual Basic Projects folder in the Project Types pane. The project
templates available in Visual Basic .NET will be listed in the Templates pane.
5. Click on Class Library. The option will be selected.

6. Type a name for the project in the Name text box.
7. Click on OK. Visual Studio .NET will create a class library project and add a module
file to it.

Renaming the Module Files and the Class

After you create a new project, you should rename the module files and the default class
name generated by the wizard so you can easily identify the control.
1. Right-click on the name of module file in the Solution Explorer. A shortcut menu will
appear.
2. Click on Rename. The name of the module file will be highlighted.

3. Type a new name for the file.

Tip When you rename the module file, make sure that you retain the
default .vb file extension.

4. To change the name of the class in which the control will be defined, select the name
of the class and type the new name.

Now you can use the class library project to create the composite control.

Coding the Functionality of the Control

To create a composite control, you need to derive the class used for implementing the
control from the Control class and then implement the INamingContainer interface. You
also need to override the CreateChildControls function of the Control class. The
CreateChildControls function defines the controls that need to be rendered by the
composite control.

When you create a composite control, you need to import the required namespaces into
your application.
1. Type the statements to import the namespaces that need to be used by the control.
Notice that when you import System.Web and its associated namespaces into your
application, the application will display a notification that the namespace cannot be
found. This notification is displayed because the System.Web.dll file, which contains the
definition of the System.Web namespace, has not been referenced by the application.

2. To add a reference to the System.Web.dll file, right -click on the name of the solution in
the Solution Explorer. A shortcut menu will appear.
3. Click on Add Reference. The Add Reference dialog box will open.

4. Scroll down the Component Name list and click on the System.Web.dll file. The file will
be selected.
5. Click on Select. The file will be added to the Selected Components list.

6. Click on OK. A reference will be added to the System.Web.dll file.

Finally, you need to override the CreateChildControls function to render the child controls
for the composite control. In the code for the composite control, I have added a Rate this
Article label and added four RadioButton controls to enable users to rate the article.

After you create the composite control, build the application. A .dll file will be created for
the control, which can be used in an ASP.NET application.

Adding the Composite Control to a Web Form

After you create the composite control, you can add a reference to the control and use it
in an ASP.NET application. In this section, I will examine the steps to use a composite
control on a Web form.

Creating a Reference to the Control

To create a reference to the composite control, open the ASP.NET application to which
you want to add the reference and follow these steps.
1. Right-click on the name of the solution in the Solution Explorer. A shortcut menu will
appear.
2. Click on Add Reference. The Add Reference dialog box will open.
3. Click on the Projects tab. The tab will move to the front.
4. Click on the Browse button. The Select Component dialog box will open.

5. Navigate to the location of the .dll file for the composite control.
6. Click on the .dll file and click on Open. The file will be added to the Selected
Components list of the Add Reference dialog box.

7. Click on OK. A reference to the composite control will be added to your project.

After you add a reference to the composite control, you can instantiate the control on a
Web form.

Instantiating the Control

To instantiate a control on a Web form, you need to register the control by using the @
Register directive.
1. Open the Web form on which you want to instantiate the control.
2. Click on the HTML tab to switch to the HTML view of the form. The Web form will open
in HTML view.

3. Add this directive to the Web form. The composite control will be registered on the
Web form.

4. Instantiate the control on the form the same way you would instantiate any other
server control.

5. Click on the Design tab to switch to the Design view of the form. The control will be
visible in the Design view of the form.

After you add the composite control to the form, you can change its properties using the
Properties window, the same way you would change the properties for any other server
control.

Testing the Control

This completes the discussion on creating and utilizing composite controls on a Web
form. In the next chapter, you will be introduced to the concept of Web services, which

form an integral part of ASP.NET and are one of the key components of the .NET
initiative.

Chapter 14: Getting Started with ASP.NET
Web Services

Overview

In today’s business world, people rely on the Web to access data and transfer it between
Web sites and databases which is an example of distributed applications. However,
consider a scenario in which you need to access data from a data source that is not
compatible with ASP.NET. The easiest way to make this data available to a Web
application is to use XML, a platform-independent industry standard that can be used for
exchanging data between applications.

ASP.NET enables you to create XML Web services that can exchange data between
applications in XML format. This chapter introduces you to XML Web services and
provides you with the basic information to begin creating Web services in ASP.NET. In
this chapter, you’ll learn how to:
§ Define Web services
§ Create Web services in the .NET Framework

Defining Web Services

Consider a scenario in which you want to buy CDs on the Internet. When you place an
order for a CD, you also need to specify your credit card details. These details are then
validated against a database that stores the credit card details, such as the number, the
card’s validity, your credit limit, and so on. A similar validation is required when you order
other products on the Internet, such as books or garments. To validate credit card
information, you can implement the validation code in a Web service that can be used by
different Web sites.
Web service providers can host a Web service on the Internet. Applications can then
communicate with the Web service by using the Web service’s URL. Applications that
utilize a Web service by calling its functions are called Web service clients. A Web site
that provides data to users is an example of a Web service client.
Web services use Internet protocols and standards, such as XML and HTTP. Internet
standards enable you to create a platform-independent infrastructure that can be used
for the effective integration of applications. Web services use the XML messaging
technology to access or implement the code written to provide the required functionality.
Therefore, the Web service provider application and the Web service client application
can be integrated to provide a complete business solution even if they are running on
different platforms. Web services are also referred to as XML Web services because
they use XML for data exchange.

XML Web services offer significant advantages. For example, you don’t need to worry
about the database schema, which defines the relationships between tables in a
database, or the internal implementation of business logic at the data source. Since the
data is transferred in XML format, it can easily integrate with the existing line-of-business
applications of an organization. In addition, you can automate some of the common
business processes that involve data transfer between organizations.

In this section, I will describe the architecture of Web services and then explain how they
work. Finally, I will describe some of the common technologies that are associated with
XML Web services to help you understand the concept.

Understanding the Architecture of Web Services
A Web service is made up of four layers—the data layer, the data access layer, the
business layer, and the listener layer. These layers work together to allow a Web service
client to interact with a Web service. Table 14.1 explains the layers in the Web service
architecture.

Table 14.1: Web Service Architecture Layers

Layer Description

Data layer The data
layer
contains
data that
can be
accessed by
a Web
service. It
includes a
database or
another data
source that
can be
accessed by
the Web
service to
manage
information.

Data access layer The data
access layer
is an
intermediate
layer
between the
data layer
and the
business
layer. It is
responsible
for
interacting
with the
data layer to
retrieve data
and make it
available for
the Web
service. The
data access
layer also
updates the
data source
after a
business
transaction.
Finally, it
maintains
the integrity
of data by
validating
changes

Table 14.1: Web Service Architecture Layers

Layer Description

that are
made to the
data with
the business
logic of the
application.

Business layer The
business
layer
implements
the business
logic of the
application
and
provides
accessibility
to the Web
service. To
do this, the
business
layer is
internally
divided into
two layers—
the business
logic layer
and the
business
façade
layer. The
business
façade layer
is an
interface
that
provides
access to
the services
provided by
the business
logic layer.

Listener layer The listener
layer is the
uppermost
layer in the
Web service
architecture;
it is also the
closest to
the client
application.
The listener
layer listens
for requests
that are

Table 14.1: Web Service Architecture Layers

Layer Description

made by
Web service
clients and
converts the
requests to
forms that
can be
deciphered
by the Web
service. The
business
façade layer
processes
the request
and sends
the result
back to the
listener
layer. The
listener
layer then
forwards the
result to the
Web service
client in the
form of an
XML
message.

Understanding the Workings of Web Services

A Web service exposes one or more Web methods. Web service clients can use these
Web methods to interact with a Web service. A Web service client calls one or more
Web methods of a Web service by using its URL. The request for the Web service is
received and interpreted by the listener layer. The request sent to the listener layer is in
the form of an XML message and is transferred using an Internet transfer protocol such
as HTTP. (You will learn more about XML and HTTP later in this chapter.)

The request is interpreted by the listener layer and forwarded to the business layer,
which performs the necessary business processes to process the request. While
processing the request, the business layer might interact with the underlying data layer.

When the request is processed, the result is sent back to the Web service client following
the same path that was used to route the request to the Web service. The result for the
request is transported as a SOAP (Simple Object Access Protocol) package, which I will
discuss in the following section.
The interaction of a Web service client with a Web service is a straightforward
procedure. However, it involves a number of technologies, such as XML, SOAP, WSDL
(Web Services Description Language), and UDDI (Universal Description Discovery and
Integration). In the next section, I will discuss these technologies briefly.

Web Service Technologies

As I discussed earlier, Web services support Internet standards and technologies, such
as HTTP and XML. Read on to learn more about these standards and technologies.

HTTP

You need a common set of rules or protocols to facilitate the transfer of data on the
Internet. HTTP is the network protocol that is used for transferring data on the Internet; it
defines the procedure for transfer of data over the network. In addition, HTTP provides a
framework for displaying data on a Web page in a Web browser. Data that is transferred
using HTTP includes requests, responses, HTML pages or files, and Web application
data.

XML
XML is a meta-markup language that is used to describe data in a structured format. A
meta-markup language uses easy to understand descriptions for data, which makes it
possible for users to determine what data is stored in the XML document. XML is defined
by W3C (World Wide Web Consortium) as a means to store, transport, and display data.
It is widely used to display data over the Internet because it provides a standard format
to present data across applications.

XML data is stored in XML documents that contain XML tags. In addition to the tags
present in XML, you can create customized tags to display data. XML tags contain
elements, which in turn are associated with attributes. To understand the tags used in
XML, you should create an XML document.

Creating an XML Document

The urllist.xml file declares a tag named NewDataSet containing an element called URL.
The URL element stores five Web addresses: www.asp.net, www.aspalliance.com,
www.123aspx.com, www.aspfree.com, and www.aspobjects.com.

Now that you’ve looked at an XML document, take a look at how XML encompasses the
concept of Web services.

The Role of XML in Web Services

XML is a platform-independent format for porting data. Data in XML format can be
accessed by any XML-enabled application. Because the data is easily accessible, Web
applications are able to communicate effectively with Web services.

Web services should be available to devices and Web browsers running on any
operating system. XML makes this possible by presenting the text from a Web service in
plain text that is easily understood by all devices.

SOAP

As I discussed earlier, when a request for a Web service is made, the request is
packaged as a SOAP package. SOAP is a lightweight protocol based on XML that is
used to transfer data from a Web service client application to a Web service provider
application and vice versa. The support for XML and HTTP makes SOAP a platform-
independent transfer protocol.

Note SOAP also supports transport protocols such as FTP (File
Transfer Protocol) and SMTP (Simple Mail Transfer Protocol).

When a Web service client communicates with a Web service, it sends a request to the
Web service as a SOAP message, which includes the call to the Web service. In
addition, the result of the Web service is sent as a SOAP package in the form of an XML
document. The following list presents the components of a SOAP package.

§ A SOAP package contains an envelope that encapsulates the data
that is communicated from a Web service client to a Web service and
vice versa. The envelope is a mandatory component of the SOAP
package.

§ When data is transferred over a network, a transport protocol is used.
This protocol defines a set of rules to encode or decode data that is
transferred over the network. This helps to maintain the integrity of
data and allows a smooth transfer of data over the network. This
component is also mandatory.

§ In addition to the previously listed components, a SOAP package
includes two optional components—a message pattern and the
binding between SOAP and HTTP.

Although SOAP is a protocol, it does not define any syntax for the transfer of data.
Instead, SOAP defines the mechanism of data transfer across multiple applications.
SOAP does not require any additional hardware or software investments and can be
accessed by any device that supports basic Internet standards.

WSDL

Similar to XML, WSDL is also a markup language that defines data in a Web service.
WSDL is used to generate a discovery document for a Web service. A discovery
document is an XML file that contains information about the Web services, such as the
parameters passed to the Web service call statement, a SOAP message, and the
exchange mechanism used to transfer data.

A discovery document also specifies the mechanism used by the Web service client
applications to communicate with the Web service. The discovery document has a .wsdl
file extension and can be accessed using the Web Services Discovery tool. This tool is
an executable file, Disco.exe, that generates files with extensions such as .disco, .wsdl,
.discomap, and .xsd.

UDDI
A Web service can be accessed by several Web service clients. However, to make Web
service clients aware of your Web service, you need to register it with a directory called a
UDDI directory. A UDDI directory is like a Yellow Pages that contains a list of all the Web
services created by users across the network. To register the Web service with a UDDI
directory, you use UDDI. UDDI is a mechanism that is employed by a Web service client
to discover a Web service using the service’s discovery document.

After you create a Web service, you register it with a UDDI directory. Interested users
can use the Web service by customizing it to fit their needs.

A UDDI directory contains a pointer to all of the Web services registered with the UDDI
directory in an XML file maintained by the directory.

Note The pointer to the Web service contains information about the
WSDL document of the Web service. Therefore, you first need to
create a WSDL document for your Web service.

Searching for information about Web services is similar to searching for data on a Web
site. A developer can type the search criteria for the required Web service in the UDDI
directory, and the directory will return a list of matching Web services. The user can then
use the required Web service.
Now that you know more about the Web service technologies, move on to the next
section to explore the creation of Web services in the .NET Framework.

Creating Web Services in the .NET Framework

The .NET Framework provides complete support for creating, deploying, and maintaining
Web services. Web services in the .NET Framework are created using ASP.NET. To
create a Web service in ASP.NET, you can use the ASP.NET Web Service template

provided by Visual Studio .NET. To access the template, open Visual Studio .NET and
perform the following steps.
1. Click on File. The File menu will appear.
2. Move the mouse pointer to New and click on Project. The New Project dialog box will
open.
3. In the Project Types pane, select the Visual Basic Projects option. The templates
available for creating Visual Basic .NET projects will appear in the Templates pane.
4. In the Templates pane, select the ASP.NET Web Service option.
5. In the Location text box, type the address of the server on which you want to develop
the Web service.

6. Click on OK. Visual Studio .NET will create a new Web service on the server.

Tip If the development server is the same as the local machine, type the
address of the development server as http://localhost/WebService1.
You can also specify a different name for your Web service in the
Location text box. For example, to name the Web service that you
create MyWebService, type http://localhost/MyWebService in the
Location text box.

Note If a Web service already exists with the name that you have

specified in the Location text box, Visual Studio .NET will prompt
you to specify another name. A new Web service will then be
created at the specified location with the name that you choose.

Understanding Default Files Created for Web Services

Table 14.2 discusses the files created by Visual Studio .NET in detail.

Table 14.2: Web Service Project Files Created by Visual Studio .NET

File Description

References The References folder
contains the Web
references for
WebService1. By
default, the
References folder
contains references to
the System.dll,
System.Data.dll,
System.Web.dll,
System.Web.Services
.dll, and
System.XML.dll files.

AssemblyInfo.vb The AssemblyInfo.vb
file contains the
metadata for the
assemblies required
for a Web service.
This metadata
includes information
such as name and
version of the
assembly for a Web
service.

Global.asax The Global.asax file
contains the code for
events generated in
the WebService1
project. In addition,
the Global.asax file
defines variables with
application level
scope and manages
application and
session state.

Service1.asmx The Service1.asmx
file is used to
implement the
functionality of the
Web service. A Web
service has a proxy

Table 14.2: Web Service Project Files Created by Visual Studio .NET

File Description

class that handles the
transfer of SOAP
messages over a
network. The proxy
class is created using
the Wsdl.exe tool and
uses HTTP to transfer
SOAP messages. The
information about this
proxy class is stored
in the Service1.asmx
file.

Web.config The Web.config file
contains the
configuration settings
for ASP.NET Web
services. You can
make changes to the
configuration settings,
if required. This file is
the same as the
Web.config file that is
used in ASP.NET
Web applications.

WebService1.vsdisco The
WebService1.vsdisco
file contains all of the
information that is
required by the Web
service clients to
access the Web
service. This
information includes
the discovery
information about the
Web service and the
Web methods
implemented by the
Web service.

Understanding the Default Code Generated for Web Services

In addition, a public class with the name Service1 that is inherited from the
System.Web.Services.WebService class is created. The Service1 class also contains a
default Web method, HelloWorld().

The HelloWorld() Web method is enclosed within comment entries by default. To run the
Web service, remove the comment entries.

Testing Web Services

After you create a Web service, you need to test it to ensure that it works correctly.
Before testing and debugging a project, you need to set the Service1.asmx page as the
start page.
1. Right-click on the Service1.asmx file in the Solution Explorer. A shortcut menu will
appear.
2. Click on the Set As Start Page option.

Note The functionality in a Web service is provided by the Web methods
that you create in the Web service.

3. Once you have created the Web service, you can test it on a Web browser, such as
Internet Explorer. Click on Debug. The Debug menu will appear.
4. Click on Start. The Web service will be launched in Internet Explorer.

When you run the project, the Service1.asmx page will be displayed in the Internet
Explorer browser window.

This completes the discussion on Web services. In the next chapter, I will continue with
the MySourceCode application, and you will learn to create a Web service for the
application. The Web service accesses XML data and displays the data using a Web
service client.

Chapter 15: Building ASP.NET Web Services

Overview
The last chapter introduced the concept of Web services. ASP.NET Web services can
interact with other applications using XML. Since XML is a platform-independent format
for transferring data, you can create a Web service on one platform and implement it on
another.

ASP.NET provides inherent support for XML Web services. When you create an
ASP.NET Web service in Visual Studio .NET, you don’t need to worry about
implementing the programming logic to make data accessible in XML format to a Web
service client. Instead, you can concentrate on coding the business logic of the Web
service; the development environment takes care of the rest.

This chapter provides you with the skills to create an ASP.NET Web service. In this
chapter, you’ll learn how to:
§ Create an ASP.NET Web service
§ Access a Web service from a Web service client

Creating a Web Service

The ASP.NET Web Service project template is used to create ASP.NET Web services.
You can create a new project by using the template and adding Web methods to the
project. In this section, I will explain the steps to create a Web service using the
ASP.NET Web Service template.

Creating an ASP.NET Web Service Project

To create an ASP.NET Web service project, launch Visual Studio .NET and follow these
steps.
1. Click on File. The File menu will appear.
2. Move the mouse pointer to New. The New submenu will appear.
3. Click on Project. The New Project dialog box will open.
4. Click on the Visual Basic Projects folder in the Project Types pane. The available
Visual Basic .NET templates will be listed in the Templates pane.
5. Click on ASP.NET Web Service. The option will be selected.

6. Change the name of the Web service by appending the name of the Web service to
the location displayed in the Location text box.
7. Click on OK.

Adding Web Methods to the Web Service

After you create the new Web service, you will need to add Web methods to it. You add
Web methods to the Web service using the Code Editor.
1. Double-click on the Service1.asmx.vb page in the Design view. The form will open in
the Code Editor.
2. Type the definition of the Web method as shown here. In this definition, I have used a
FileStream object to open the urllist.xml file from the Web server. The FileStream object
is used to initialize a StreamReader object. The StreamReader object is used as a data
source by a DataSet object, which reads XML data from the urllist.xml file. The data read
by the DataSet object is stored in an ArrayList object, which is returned by the Web
method.

3. Change the name of the Web service class from Service1 to a name that can be
associated with the Web service.

4. Change the default namespace of the Web service and add a description to the
service using the WebService attribute.

After you make these changes, your Web service will be ready.

Testing the Web Service

After you create a Web service, you should test it. You can test a Web service without
creating a Web service client. All you need to do is to run the Web service and use the
HTML interface that is provided by Visual Studio .NET to retrieve data from Web
methods that are defined in the Web service.

After you add the XML file to the root directory of the Web service project, follow these
steps to test the Web service.
1. Click on Debug. The Debug menu will appear.
2. Click on Start. Visual Studio .NET will compile and run the Web service, and the
UsefulSites page will appear.
3. The UsefulSites page provides a list of Web methods implemented by the Web
service client as hyperlinks. To test the Web method that you added to the site, click on
the GetLatestSites link. The GetLatestSites page will appear.

4. The GetLatestSites Web method does not require any parameters; therefore, the Web
service does not prompt you to specify any. Click on Invoke to test the Web method.
Data from urllist.xml will be retrieved and displayed on the Web page.

Accessing a Web Service

A Web service does not display information directly to users. Instead, a Web service is
often associated with one or more Web service clients that can display data. In this
section, I will use a Web service client to access data from the Web service created in
the preceding section.

Adding a Web Reference

Often, an ASP.NET Web service client is an ASP.NET Web application. Visual Studio
.NET enables you to easily implement the functionality of a Web service in an ASP.NET
Web application.

The Web service client that I will use to connect to the Web service is the
MySourceCode application that was discussed in the last few chapters. As you’ll recall,
MySourceCode is an ASP.NET Web application.

Consider that the MySourceCode application needs to display a list of useful Web sites
on its home page. If the Web application does not have direct access to this information,
it can connect to the Web service created in the preceding section and utilize its Web
methods to display data.

To connect to the Web service and utilize its Web methods, you need to add a Web
reference to the Web service. A Web reference enables you to download the description
of the Web service and use the description to write the code for implementing the Web
service.
1. Right-click on the name of the solution in the Solution Explorer. A shortcut menu will
appear.
2. Click on Add Web Reference. The Add Web Reference dialog box will open.
3. Click on the Web References on Local Web Server link. A list of Web services
available on the local computer will appear.

4. Click on the link for the Web service that you want to implement. Links to the
contractual information and the documentation of the Web service will be displayed.

5. Click on Add Reference. A reference to the Web service will be added to the
application.

Implementing the Web Service

After you add a Web reference to the Web service, you need to write the code to use the
Web methods of the Web service in your application.
1. Open the form in which you want to implement the Web reference in the Code Editor.
2. Type the code to retrieve data from the Web service, as shown here. In the
GetDataFromWebService function, I have retrieved data from the Web service using its
GetLatestSites Web method. I have displayed the data retrieved from the Web service
by using a Repeater control.

After you write the code to implement a Web service, you can test the Web application to
determine whether the output is what you want.

Testing the Output of a Web Service

You can test the output of the Web service by running the ASP.NET Web application in
which you have implemented the Web service. When you run the application, it will

connect to the Web service, retrieve data using its Web methods, and display data on a
Web form.

This completes the discussion on creating and implementing ASP.NET Web services. In
the next chapter, you will learn how to create applications that can be accessed from
mobile devices.

Chapter 16: Building Mobile Web Applications

Overview
Mobile Web applications enable you to access a Web application using a WAP (Wireless
Access Protocol)-enabled device, such as a cell phone or a personal digital assistant.

Microsoft has provided a Mobile Internet Toolkit that enables you to create mobile
applications using Visual Studio .NET. This chapter describes the procedure for creating
mobile applications using Visual Studio .NET. In this chapter, you’ll learn how to:
§ Install prerequisite software for creating mobile applications
§ Create a mobile application in Visual Studio .NET

Overview of Mobile Web Applications

Before the advent of Visual Studio .NET, it was difficult to create mobile applications.
The reasons why were attributed in part to the lack of a suitable technology that could
cater to the needs of a mobile application developer and in part to the limited capabilities
of mobile devices.

While mobile device manufacturers have done their bit to improve the performance of
mobile devices, Microsoft has introduced the Mobile Internet Toolkit, which can be
integrated with Visual Studio .NET to create mobile applications.

The Mobile Internet Toolkit provides all the necessary tools, mobile Web forms, mobile
Web controls, and extensive documentation that are required to create mobile
applications.

The applications that you create using the Mobile Internet Toolkit are executed in the
.NET Framework environment. Therefore, you can use the class library of the .NET
Framework in mobile applications.

One important component of the Mobile Internet Toolkit is mobile Web forms, which can
be used to design the interface of a Web application as it should appear on the mobile
device. A mobile Web form can contain several forms that can be displayed on the
mobile device one at a time. The advantage to displaying information on multiple forms is
that you can account for the limited display area of the mobile device.

You will learn more about creating mobile applications later in this chapter. First, I will
explain the steps to install prerequisite software for creating mobile applications.

Installing Prerequisite Software
To create mobile Web applications, you need to install the Microsoft Mobile Internet
Toolkit. The toolkit can be downloaded for free from
http://msdn.microsoft.com/vstudio/device/mitdefault.asp.
After you install the Microsoft Mobile Internet Toolkit, you should install Microsoft Mobile
Explorer, which emulates a mobile device and can be used for testing the output of a
mobile application. The Microsoft Mobile Explorer Toolkit can be downloaded from
http://msdn.microsoft.com/vstudio/device/mitdefault.asp.

In this section, I will explain the steps to install the Mobile Internet Toolkit and the
Microsoft Mobile Explorer Toolkit.

Installing the Mobile Internet Toolkit

After you download the Mobile Internet Toolkit, follow these steps to install it.
1. Double-click on the installation file. The Welcome screen of the wizard will appear.
2. Click on Next. The License Agreement screen will appear.

3. Click on the I Accept the Terms in the License Agreement option. The option will be
selected, and the Next button will be enabled.
4. Click on Next. The Setup Type screen will appear.

5. On the Setup Type screen, you can specify whether you want to install all components
of the Mobile Internet Toolkit or only specific components. To install all components,
retain the default option and click on Next. The Ready to Install the Program screen will
appear.

6. Click on Next to begin the installation of the Mobile Internet Toolkit. The setup wizard
will install the toolkit. When the installation is complete, the InstallShield Wizard
Completed screen will appear.
7. Click on Finish to exit the wizard.

After you complete the installation, you can create mobile applications in Visual Studio
.NET.

Installing the Microsoft Mobile Emulator

The Microsoft Mobile Emulator enables you to test the output of your application as it
would appear on a mobile device. To install the Microsoft Mobile Emulator, download the
Microsoft Mobile Explorer Toolkit installation file and follow these steps.
1. Double-click on the installation file. The Welcome screen of the wizard will appear.
2. Click on Next. The License Agreement screen will appear.

3. Click on Yes to accept the license agreement. The Select Components screen of the
wizard will appear.

4. Retain the default options to install all the components of Microsoft Mobile Explorer
and click on Next. The wizard will install Microsoft Mobile Explorer on your computer and
display the Microsoft Mobile Explorer - Readme screen.

5. Click on Finish to exit the wizard.

Creating a Mobile Web Application

To create a mobile Web application, you can use the Mobile Web Application template,
which is installed when you install the Mobile Internet Toolkit. However, you can also add
mobile Web forms to your existing application to make them mobile-device enabled.

Adding a Mobile Web Form to a Project

To add a mobile Web form to your application, follow these steps.
1. Right-click on the solution to which you want to add the mobile Web form. A shortcut
menu will appear.
2. Move the mouse pointer to Add. The Add submenu will appear.
3. Click on Add Web Form. The Add New Item dialog box will open.

4. Click on Mobile Web Form. The option will be selected.

5. Type the name of the Web form in the Name text box and click on Open. A new
mobile Web form will be added to the application.

Designing Forms for a Mobile Application

To design the forms for a mobile application, you can use the mobile controls available in
the Toolbox. If you view the list of mobile controls available in the Toolbox, you will notice
that the list includes a Form control.

The Form control is used to display a different screen on the same Web form. This
control has been included in the Mobile Internet Toolkit to account for the smaller display
area on mobile devices.

To design forms for a mobile application, follow these steps.
1. Click on the Command control in the Toolbox. The control will be selected.

2. Press and hold the mouse button and drag the control to the form.
3. Change the Text property of the cont rol to View Web Server Statistics.

4. Add another Command control to the form and change its Text property to View Site
Statistics.

This completes the design of the first form. However, to display data pertaining to the
performance of the Web server and Web application, you need to add another form to
the application.
1. Click on the Form control in the Toolbox.
2. Press and hold the mouse button and drag the control to the form. A new form will be
placed on the Web form.

3. Add a TextView control to the form. The control will appear on the form.
4. Change the ID property of the TextView control to txtPerformance.

Writing the Code for the Form

After you design the form, you need to write the code for it.
1. Double-click on the View Web Server Statistics button to open the Code Editor.
2. Type the code shown here in the Click event of the control. In this code, I have
determined the amount of time the computer has been running. This value, retrieved by
the Environment.TickCount property, has been assigned to an object of the TimeSpan
class. The object of the TimeSpan class is then used to display the time on the second
form in the Web form. To switch to the second form, I have used the ActiveForm property
of the mobile Web form.

3. Repeat steps 1 and 2 to write the code for the Click event of the View Site Statistics
button. In this code, I have used the GetCurrentProcess method of the Process class to
create an object that represents the application the user is accessing. Then, I used the
StartTime property of the application to determine when the application was started. This
information is displayed to the user in the second form.

Testing a Mobile Application

You can test a mobile application using the Microsoft Mobile Emulator. When you install
the emulator on your computer, two versions of it are installed—the stand-alone version,
which operates as a stand-alone application, and the integrated version, which integrates
with the Visual Studio .NET development environment.

You can use either of the two versions to test your application. To test the application
using the integrated version of the emulator, follow these steps.
1. Click on View. The View menu will appear.
2. Move the mouse pointer to Mobile Explorer Browser. The Mobile Explorer Browser
submenu will appear.
3. Click on Show Browser. The MME Emulator window will appear.

4. In the MME Emulator window, type the address of the mobile Web form and press
Enter.

5. The mobile Web form will appear in the emulator window. Click on the first button to
obtain information about the duration of time for which your computer has been on.

You have now successfully created a mobile Web application. The application can be
accessed on any WAP-enabled mobile device. As you probably noticed, the steps to
create the application are quite similar to the steps to create other Web applications.

Chapter 17: Managing State in ASP.NET
Applications

Overview

HTTP is a stateless protocol. Thus, when a user sends a request to the server, the
request is processed and the data that was involved in processing the request is cleared.

By simply using the HTTP protocol, there is no way in which the server can determine
whether a subsequent request is from the same user. However, it is often necessary to
track the users who are visiting your Web application. For example, to determine which
shopping cart needs to be displayed to a user, you need to know the credentials of the
user who is logged on to the Web application.

ASP.NET allows you to track visitors to your Web site by implementing state
management. State management is a procedure by which a unique session is generated
for every user who visits your Web site. Whenever the user sends a request to the Web
application, the session data is used to retrieve the identity of the user and process the
request.

ASP.NET provides client-side and server-side state management capabilities. In this
chapter, you’ll learn how to:
§ Implement client-side state management
§ Implement server-side state management

Implementing Client-Side State Management
For client-side state management, ASP.NET provides cookies, query strings, and hidden
fields. Each of these options stores data that pertains to the state of the user at the client
end. Therefore, these mechanisms are referred to as client-side state management. In
this section, I will explore these three mechanisms for client-side state management.

Using Cookies
A cookie is a token that is used by a Web server to identify the client of a Web
application. When you enable forms authentication on a Web application, the application
uses client-side cookies to authenticate a user and process user requests.

Cookies can be either temporary or persistent. Temporary cookies are stored in the
client’s browser. These cookies are removed when the browser session with the Web
application ends. Persistent cookies, on the other hand, are stored on the hard disk of
the client computer as a text file. These cookies can be retrieved by the Web application
when the client establishes another session with it.

Using Query Strings

Query strings are used to pass values from one Web form to another. The value that
must be passed from the first form is added to the address of the second form.

Using Hidden Fields

Hidden fields are used by ASP.NET to handle postbacks from a form. Whenever a Web
form submits data to a Web application, the data on the form is processed and the same
form might need to be reloaded. For example, when a user submits a registration form
after filling in all the data fields, the form should be redisplayed to the user if the data in
one or more fields is not valid.

Implementing Server-Side State Management

Server-side state management is implemented in ASP.NET by the Session and
Application state objects. Although the implementation of these objects is quite similar,
their purposes are different. The Application object is used to initialize a set of variables
when the application is first started. The Session object is used to initialize a set of
variables every time a client starts a new session.

In this section, I will examine the steps to configure the Session and Application state
objects for an application.

Implementing Session State Management

The Session object manages the session state. You can use the Start and End events of
the Session object to configure the session state. The Start and End events are always
coded in the global.asax file of the application. The global.asax file defines application
level variables, which can be accessed by all files in the application.

Take a look at an example of the implementation of the Session state object.

Implementing Application State Management

Application state is configured in the same way as the Session state object. Application
state is configured in the Start and End events of the Application object. However, the
code in these events is executed only once; the code for the Start event is executed
when the application is started, and the code for the End event is executed when the
application is terminated.

Variables that need to be accessed from a number of pages in the Web application are
configured in the Application state. For example, you might store the database
connection strings in an XML file. In the Start event of the Application object, you can
retrieve the connection strings and store them in global variables. These variables can
be used throughout the application to connect to the data source and retrieve data.

This completes the discussion on the implementation of state management in ASP.NET.
In the next chapter, you will learn about implementing caching in ASP.NET applications,
which enables you to store frequently used data within the application to improve the
application’s performance.

Chapter 18: Caching in ASP.NET Applications

Overview

Data-intensive applications often require frequent access to the data source. When many
users access an enterprise application, the load on the database might increase
substantially, leading to a decline in performance. You can reduce the load factor on
Web servers and database servers by implementing caching on a Web application.
Caching enables you to store data at temporary locations. When a user requests data
that is cached, the data is retrieved from the cache instead of the original data source,
thus reducing the load on the data source.

ASP.NET provides three types of caching—page-output caching, page-fragment
caching, and page-data caching. Page-output caching and page-fragment caching are
used to cache an entire Web form as it appears on the screen. However, page-data
caching is used to cache specific elements of a Web form, but not its complete interface.
In this chapter, you’ll learn how to:
§ Implement page-output caching
§ Implement page-fragment caching
§ Implement page-data caching

Implementing Page-Output Caching

In page-output caching, when the page is requested for the first time, a page-level cache
is created to cache the contents of a Web form. When subsequent requests are made to
the Web form, the data is retrieved from the cache, which reduces the load on the Web
server.

To implement page-output caching, you need to use the @ OutputCache directive. The
@ OutputCache directive includes a number of attributes that are used to configure the
cache. These attributes include
§ Duration. The Duration attribute determines the number of seconds for which

a cache is valid. For example, if you specify a duration of 60, the cache will
be valid for one minute. After that time, the cache will be recreated.

§ Location. The Location attribute specifies the location of a cache. ASP.NET
applications are capable of caching content on any cache-enabled device,
such as the client computer that has requested the Web form or the proxy
server that is used to access the Web application. By default, the value of

the Location attribute is set to Any, which enables ASP.NET applications to
cache data on any client-enabled device. However, if you want to use a
specific device for caching data, you can specify Client, Downstream, or
Server. If you do not want caching enabled for a Web form, you can specify
the value None.

§ VaryByParam. Consider a scenario in which you have enabled caching for a
Web form, Article.aspx. The Web form accepts the article ID from the query
string and retrieves data for the article. When the page is requested for the
first time, the article with ID=1 is loaded. This page will be cached. If
another user requests the same form with article ID=2, the cached page will
not be loaded because the cache represents the article with ID=1.

§ To avoid loading cached data when the value passed in the query string is
different, you can specify the query string key in the VaryByParam attribute.
Therefore, in this case, you should specify ArticleID for the VaryByParam
attribute.

To implement page-output caching, use the Article.aspx page of the MySourceCode
application. See Chapter 10, “Managing Data from ASP.NET Applications,” for more
information on how the Article.aspx page was created.

In the Load event of the form, specify the following line of code to show the current time
in the lblRefreshTime label.

lblRefreshTime.Text = DateTime.Now.ToShortTimeString()

After you add the label, you need to add the @ OutputCache directive to the Article.aspx
form.
1. Click on the HTML tab to switch to the HTML view of the Article.aspx form.

2. Add the @ OutputCache directive, as shown here. The Article.aspx form will be
cached for two minutes. If the same article is loaded before the two minutes has elapsed,
the time displayed in the lblRefreshTime label will remain the same, implying that the
data is retrieved from the cache. However, if you load a different article, the time in the
lblRefreshTime label will be updated, implying that the data has been queried from the
database.

Implementing Page-Fragment Caching

Page-fragment caching is not much different than page-output caching, except that one
or more components of the Web form are cached, instead of the complete Web form. In
page-fragment caching, you can typically cache the data of a user control, which is
rendered from the cache each time the page is requested.

You can implement page-fragment caching for specific components on a Web page. For
example, you can cache the output of a user control by implementing page-fragment
caching.

For page-fragment caching, you need to specify the @ OutputCache directive for the
user control in which you want to implement caching.

Implementing Page-Data Caching

In page-data caching, the data of a page is cached, instead of the complete page. This
method is very useful in a dynamic page that is changed often, when you want to cache
only the components that are relatively static.

To implement page-data caching, you need to use the Cache class of the
System.Web.Caching namespace. One object of the Cache class is created for every
application. You can use this object to cache and retrieve frequently accessed data.

To cache data using the Cache class, you need to use key and value pairs. For every
value that you add to the cache, you need to specify a key. The key can be used to
access the value that you add to the cache.

In this section, I will explain the steps to implement page-data caching in an ASP.NET
application. I will also explain how you can generate dependencies to invalidate the
cache when elements that are associated with it are updated.

Adding Items to the Cache
To add items to the cache, you can access the Cache object from the Page object. (See
Chapter 3, “Exploring the New Features of ASP.NET,” for more information on the Page
object.) In this section, I will use the Cache object to cache the data that is retrieved from
a Web service.
Since the data retrieved from the Web service is relatively static, you need to make a call
to the Web service frequently. This will significantly improve the performance of your
Web application. In Chapter 15, “Building ASP.NET Web Services,” I retrieved data from
an XML file and exposed the data using a Web service. The data, once retrieved from
the Web service, can be cached to avoid unnecessary calls to the Web service.

To implement page-data caching, modify the GetDataFromWebService() function that
calls the GetLatestSites() function to retrieve the list of sites from an XML file.

Creating Cache Dependencies

In many cases you might need to reconstruct the cache to retrieve updated data from the
data source. When you cache data, you can establish dependencies on resources.
Every time the resource is updated, the cache is cleared and the updated data is
reloaded. This way, data in the cache is always up to date.

To ensure that data in a cache is always updated, you can create dependencies on files.
For example, if the Sales report for a department is always obtained in an XML
document, you can create a dependency to the document. Whenever the document is
updated, the cache is recreated and the updated report is reflected on the Web site.
Similarly, in the preceding example, a dependency on the urllist.xml file can be created.

As you create dependencies on files, you can also create a dependency on time. For
example, if you want to reconstruct the cache every 5 minutes, you can use the time-
dependency method.

To create dependencies, you need to create an object of the CacheDependency class.
The CacheDependency class tracks dependencies of cache data. The dependency can
be to files, directories, or keys for other objects in the cache. After you create the object
of the CacheDependency class, you can assign it to the Insert method of the Cache
class.

I will now implement file dependency for the page-data caching that was configured in
the preceding section.

Caching in Web Services

Caching in Web services is different than the caching that is implemented in ASP.NET
applications. In Web services, you need to use the CacheDuration property of the
WebMethod attribute to implement caching.

The CacheDuration property is similar to the Duration property of the @ OutputCache
directive. It specifies the number of seconds for which the Web method should cache its
output before invalidating the cache. Once the cache is invalidated, it is reconstructed on
the next request.

Now that you have learned how to implement caching in ASP.NET applications, you can
move on to tracing ASP.NET applications in the next chapter. When you trace ASP.NET
applications, you can determine the path of execution of your applications and use the
information to eliminate errors and optimize your application.

Chapter 19: Tracing ASP.NET Applications

Overview

Tracing is a method of tracking the path of execution of a Web form or an application.
When you enable tracing for a Web application, you are able to gather information on
how a Web form was loaded after the client requested the form. You can also insert
custom statements in your code to examine the state of the application. For example,
you might insert tracing statements to generate a warning whenever a variable has not
been initialized.

When you enable tracing for a Web application, the trace output is appended to the
output of Web forms. Thus, you can examine how each page of your Web application
has been executed. In this chapter, you’ll learn how to:
§ Enable page-level tracing
§ Enable application-level tracing

Enabling Page-Level Tracing

If you want to trace the execution of only a few Web forms in an application, you can
enable tracing for each page of the application separately. You can also add custom
output to the trace messages that are generated on a page. In this section, I will explain
the steps to trace Web forms in ASP.NET applications.

Generating Trace Output

Tracing can be enabled on Web forms by changing the Trace attribute of the page
directive to true. When you set this value to true, you can also specify a value for the
TraceMode attribute. The TraceMode attribute determines how trace messages are
displayed on the Web form when tracing is enabled. Trace messages can be sorted
either by category or by time. By default, they are sorted by time.

When you run this form, the trace output is appended to the output of the page. Notice
that the trace information is available in a number of tables. Each table has specific
information about the application. The information that is displayed in the tables is
explained in this section.

Request Details

Trace Information

Status Codes Associated with Responses

When you enable tracing for an application, the trace output displays the status code of
the request. The status code is derived from the W3C (World Wide Web Consortium)
standards on HTTP 1.1 standards.

The status code that is returned by a Web request is a three-digit number. The first
digit can be 1, 2, 3, 4, or 5; the representations of these numbers follow.

1. The digit 1 means that the request has been received and is
being processed.

2. The digit 2 means that the request was successfully executed.
3. The digit 3 means that the request was redirected to another

location and has not been completed.
4. The digit 4 means that the request is not correctly formed or

points to an invalid resource.
5. The digit 5 means that an error occurred at the server end,

although the request might have been valid.

You might have encountered the 404 - Not Found error when you requested a Web
page that does not exist. Now you can determine that the error was in the request that
was sent by the client, because the first digit of the status code is 4. Similarly, the 500 -
Internal Server Error occurs when the server is unable to process information because
of an internal error.

You can find detailed information on the HTTP protocol and the status codes for HTTP
requests on the W3C Web site at http://www.w3.org/Protocols/rfc2616/rfc2616-
sec6.html.

Control Tree

When you do not specify the ID property of a control, the control is automatically
assigned a unique ID by ASP.NET. Therefore, some controls that appear in the Control
Tree table might have IDs that you do not recognize because they were generated by
ASP.NET.

Session State

Cookies Collection

Headers Collection

Server Variables

Server variables are a collection of environment variables that contain a host of
information, ranging from the details of the request to the user who is currently logged
on.

Adding Custom Data to Trace Output

The TraceContext object generates the trace output that is displayed on a Web form.
Any information that you add to this object will automatically appear in the trace output.

To display custom tracing information, you need to use the Write and Warn methods of
the Trace class. Both the methods are used to write to the trace output. The only
difference is that when the Warn method is used, the text displayed in the trace output is
red. The Write and Warn methods can accept the message to be displayed in the trace
output as a string parameter, or they can accept both the category and the message that
need to be displayed.

Even though all trace messages are displayed only when tracing is enabled on a Web
application, you can use the IsEnabled property of the Trace class to determine whether
tracing is enabled for an application. This property is useful when you want to execute
code only when tracing is enabled for the application.

Enabling Application-Level Tracing

Instead of enabling tracing for each Web form individually, you can enable tracing for an
entire application. When you enable tracing for the application, the trace output for all
pages is generated. In this section, I will explain the steps to enabling tracing for an
ASP.NET application.

Configuring the Trace Service

To enable tracing for an application, you need to change the properties of the <trace>
element in the Web.config file. Change the value of the enabled attribute of the <trace>
element from false to true.

Changing Properties of the Trace Output

The <trace> element provides a number of attributes that can be configured to change
the default tracing properties of the application. For example, in the default setting of the
<trace> element, only the trace information for the last 10 pages is available on the
trace.axd page.

Apart from the enabled attribute, the trace property provides four other attributes that can
be used to control the trace output of an application. These attributes are

§ requestLimit. The requestLimit attribute specifies the maximum number
of pages for which the trace output should be available at a given period
of time. The default value is 10.

§ pageOutput. If you want the trace information to be appended to every
page, you need to change the value of the pageOutput attribute from
false to true. By default, this value is false.

§ traceMode . The traceMode property determines whether tracing
information is sorted by time or by category. The default value is
SortByTime.

§ localOnly. The localOnly property determines whether tracing is enabled
for local users only or also for remote users. By default, tracing
information is available to only those users who are logged on to the
local computer.

You should now have a good basic understanding of tracing ASP.NET applications. In
the next chapter, you will learn how to debug ASP.NET applications using the debugging
tools that are available in Visual Studio .NET.

Chapter 20: Debugging ASP.NET Applications

Overview

The advantage of creating ASP.NET applications in Visual Studio .NET is that you can
use the debugging features of Visual Studio .NET to debug the applications. Visual

Studio .NET provides many debugging tools that can be used to eliminate errors in
applications.

This chapter introduces you to all of the debugging tools that are provided by Visual
Studio .NET. It also provides a step-by-step procedure for debugging ASP.NET
applications. In this chapter, you’ll learn how to:
§ Identify debugging tools that are provided by Visual Studio .NET
§ Debug applications in Visual Studio .NET

Debugging Tools in Visual Studio .NET

Visual Studio .NET provides a number of debugging windows that can be used to debug
applications. In this section, I will discuss each debugging window in detail.

Using the Breakpoints Window

When you code your application, you might not be sure of the output of some lines in the
code. You can add breakpoints to these lines of code and examine the state of the
application when it is at the breakpoint.

Using the Watch Window

You can use the Watch window to monitor the values of variables. You can type the
name of a variable in the Watch window and press Enter to display the current value of
the variable in the Watch window.

Using the Autos Window

The Autos window is similar to the Watch window. It displays the names and values of all
variables that are involved in the execution of the current and previous lines of code.

Using the Locals Window

Using the Call Stack Window

You can use the Command window to determine the output of a given ex pression. This
window probably gets its name from the Command Prompt, where every command must
be typed.

Using the Task List Window

The Task List window is a useful tool for recording the pending work in an application. It
provides a number of useful features. For example, all of the build errors that occur in
your application are automatically recorded in the Task List window. In addition, all
comments that you add to your code using the ‘TODO keyword are also automatically
added to the Task List.

Debugging Applications

To debug applications in Visual Studio .NET, you need to insert breakpoints in your
application and run it. When your application encounters a breakpoint, it enters a
suspended mode. You can debug the application in suspended mode and resume the
execution of your application.
In this section, I will examine the steps to debug an application using the debugging tools
that were discussed in the previous section.

Using the Debugging Tools in Visual Studio .NET

To use the debugging tools, first insert a breakpoint in the application.
1. Click on the line of code to which you want to add a breakpoint.
2. Click on Debug. The Debug menu will appear.
3. Click on New Breakpoint. The New Breakpoint dialog box will open.
4. In the New Breakpoint dialog box, you can specify breakpoints either at the definition
of a function or at a specific line in the code. To specify a breakpoint at a specific line of
code, click on the File tab. The File tab will move to the front.

5. Notice that the location of the file you had selected is already specified. Click on OK. A
breakpoint will be inserted in your application.

After you insert the breakpoint, you can run the application. When the application
encounters the breakpoint, it will temporarily suspend execution, and you can use the
debugging windows to debug your application.

Attaching a Debugger to an External Application

The Visual Studio .NET debugger enables you to debug even those applications which
have not been created in Visual Studio .NET. Each application that executes on your
computer is represented by a process. You can attach the Visual Studio .NET debugger
to a running process and debug it.
1. Click on Debug. The Debug menu will appear.
2. Click on Processes. The Processes dialog box will open.
3. Select the process that you want to debug and click on Attach. The Attach to Process
dialog box will open.

4. Select the component of the application that you want to debug and click on OK. The
process you selected will appear in the Debugged Processes list of the Processes dialog
box.

5. Click on Break to debug the process.

When you click on Break, you can debug the selected application using Visual Studio
.NET, as you would debug any other Visual Studio .NET application.

This completes the discussion on debugging ASP.NET applications. Even after you have
debugged your application and ensured that it is error free, users might encounter
certain types of errors. For example, if a user requests a Web form that does not even
exist, the application will display an error message. Similarly, if the .NET Framework is
not installed correctly, your application might display an error even if it is developed
correctly. To account for such anomalies, the .NET Framework allows you to add
exception-handling code and create error pages. In fact, that is your next destination.

Chapter 21: Handling Exceptions in ASP.NET
Applications

Overview

There might be instances when your application encounters unexpected conditions. For
example, if you are using a database to retrieve information, there might be times when
the database is not accessible. In such a scenario, your application might terminate
abnormally.

To prevent your application from terminating abnormally, you can use the exception-
handling capabilities of ASP.NET. Whenever an abnormal condition is generated in the
application, an exception is thrown. You can catch the exception to determine the cause
of error and take corrective action. In the case of database connectivity failure, corrective
action might be to connect to an alternate data source.

This chapter will introduce you to exception handling in ASP.NET. In this chapter, you’ll
learn how to:
§ Implement structured exception handling
§ Add error pages to an ASP.NET application

Implementing Structured Exception Handling

To implement structured exception handling, you can either use try-catch-finally
statements or you can redirect the user to an error page when your application
generates an error. In this section, I will examine the steps to accomplish both tasks.

Using Try-Catch-Finally Statements

Try-catch-finally statements enable you to catch exceptions generated in your
application. Whenever statements in the try block generate an exception, the control of
the program moves to the catch block.

All exceptions that are generated by an application are objects of a class that is derived
from the Exception class. You can determine the type of exception generated to
determine where the error occurred and take corrective action accordingly.

The set of statements in the finally block are optional. These statements are executed
regardless of whether an exception was generated. You should use the finally block to
write those statements that should always be executed. For example, you might use the
finally block to close the connection to a data source.

Redirecting Users to Error Pages

Instead of defining multiple try and catch blocks for a Web form, you can specify an error
page to which the user is directed if a Web page throws an exception.
1. Open the file for which you want to specify an error page.
2. Click on the HTML tab. The HTML view of the file will be displayed.

3. Specify the errorPage attribute in the @ Page directive. The user will be redirected to
the error page whenever an exception is generated on the Web form.

Adding Error Pages to an Application

Your application might sometimes generate errors that are not linked to exceptions in the
application. For example, if the user requests a Web form that does not exist, an error
message stating that the resource could not be found will be displayed, although your
application will not generate an error.

This error message is associated with the HTTP errors that can be encountered by
applications while processing Web requests. These errors have an error code associated
with them that determines the cause of an error. For example, the error code 500
signifies that the Web server encountered an error.

Whenever an HTTP error is generated by an application, Internet Explorer displays a
default error page. You can change the default error page that is displayed for an HTTP
error by creating your own error pages and assigning them to the application. In this
section, I will examine the steps to create an error page and modify the Web.config file to
assign the error page to the application.

Creating an Error Page

You can create an error page in ASP.NET, or you can use any HTML page as an error
page. I prefer creating error pages in HTML because the content that I display on error
pages is static. Static content can be displayed easily on HTML pages. Moreover, the
stress on the Web server is less when it processes an HTML file than when it processes
an .aspx file.

To create an HTML error page, follow these steps.
1. Create a new file in Notepad.
2. Type the code to create the HTML interface of the application in the file.

Tip You can also create the HTML page in an HTML editor, such as

Microsoft FrontPage 2000.
3. Save the file in the root folder of the Web application.

Modifying the Web.Config File

To add an error page to an application, you need to change the customErrors element in
the Web.config file. The customErrors element includes an error sub-element that maps
error codes generated by the application to the HTML pages that should be displayed for
the error codes. To modify the Web.config file, follow these steps.
1. Double-click on the Web.config file in the Solution Explorer. The file will open in the
XML Designer.
2. Locate the customErrors element of the Web.config file and change the element, as
shown here. In this example, I have changed the mode attribute to On and associated
the Error404.htm file, which was created in the preceding section, with the error code
404.

3. Save and run the application.

When the error is generated, the application displays the customized error page instead
of displaying the standard “Page Not Found” error message.
This completes the discussion on error pages. It also brings you to the most important
element in developing an ASP.NET application—the security of the application. In the
next chapter, you’ll learn how to secure ASP.NET applications and implement different
types of authentication provided by ASP.NET.

Chapter 22: Securing ASP.NET Applications

Overview
The need to secure ASP.NET Web applications can never be overstated. You frequently
encounter or read about the security of Web sites being breached or about unauthorized
users uploading malicious content on a Web site. After you create an ASP.NET Web
application, it becomes imperative that you secure the application. ASP.NET offers a
robust security mechanism. It enables you to implement security at two levels on a Web
site. You can secure a Web application by implementing security mechanisms at IIS
(Internet Information Server), and you can also use the Web.config file to secure an
ASP.NET application internally.

This chapter describes some of the important methods for securing a Web application. In
this chapter, you’ll learn how to:
§ Implement security at IIS
§ Implement authentication in ASP.NET

Implementing Security at IIS
Every application created in ASP.NET has a virtual directory associated with it. IIS
provides an MMC (Microsoft Management Console)-based interface, Internet Services

Manager, which can be used to manage virtual directories and configure directory
security and authentication for a Web site.

In this section, I will describe the steps to secure a Web application using Internet
Services Manager. I will also describe the steps to implement Windows authentication for
an ASP.NET Web application.

Securing a Virtual Directory

Internet Services Manager provides many options that can be configured to secure the
virtual directory of a Web application. For example, you can grant or deny access to
specific machines or you can restrict the permissions of users for the virtual directory.
You can also configure authentication on a Web application using Internet Services
Manager.

Before you proceed to secure a virtual directory, I will explain the authentication methods
that are available in IIS. IIS provides three types of authentication methods:

§ Basic authentication. In basic authentication, the log-on name and
password specified by a user are used to authenticate the user before
processing a request. This method has one drawback—the user name
and password become vulnerable to hacking because they are sent from
the client to the server in an unencrypted form.

§ Digest authentication. The digest authentication method is similar to
the basic authentication method. However, this method is more secure
than basic authentication because it sends the user credentials for
validation in an encrypted form.

§ Integrated Windows authentication. The integrated Windows
authentication method uses the account credentials of a user in the
Windows 2000 domain to authenticate a user.

In addition to the three authentication methods described, IIS also provides an
anonymous authentication method. In anonymous authentication, IIS uses a built-in user
account to request resources from the Web server. This method is also referred to as
impersonation because IIS requests resources on behalf of the user.

When you want to implement authentication on your Web site, you need to disable
anonymous authentication so that the user’s credentials are used to request resources.

To secure a virtual directory and implement authentication, you first need to invoke
Internet Services Manager.
1. Click on the Start menu. The Start menu will appear.
2. Move the mouse pointer to Programs. The Programs menu will appear.
3. Move the mouse pointer to Administrative Tools. The Administrative Tools submenu
will appear.
4. Click on Internet Services Manager. The Internet Information Services window will
appear.

To configure a virtual directory, follow these steps.

1. Click on the plus sign next to the Default Web Site option in the Internet Information
Services window. The virtual directories that are installed on the default Web site will
appear.

2. Right-click on the virtual directory for the Web site that you want to configure. For
example, if you want to configure the virtual directory for the MySourceCode application
that has been created in this book, right-click on the MySourceCode option. A shortcut
menu will appear.
3. Click on Properties. The Properties dialog box will open.
4. Click on the Directory Security tab of the Properties dialog box. The tab will move to
the front.

5. The Directory Security tab allows you to configure authentication for a Web site and
grant or restrict permissions to specific computers accessing the Web site. To configure
authentication for the Web application, click on Edit in the Anonymous Access and
Authentication Control group. The Authentication Methods dialog box will open.

6. Click on the Anonymous Access check box to clear it. The option will be deselected.
7. To implement integrated Windows authentication, click on the Integrated Windows
Authentication check box if the option is not already selected. A check mark will be
placed in the check box.
8. Click on OK. The Authentication Methods dialog box will close.

9. Next, you can enable or restrict access to the application by applying IP address and
domain name restrictions. To restrict access to the Web application, click on the Edit
button in the IP Address and Domain Name Restrictions group. The IP Address and
Domain Name Restrictions dialog box will open.

10. In this dialog box, you can specify which computers are allowed to access the Web
application. However, do not change any settings in this dialog box if you want your
application to be accessible from all remote computers.
11. Click on Cancel. The IP Address and Domain Name Restrictions dialog box will
close, and the Properties dialog box will become active.

12. You can also restrict permissions of users on the Web site directory. For example,
you can restrict users from viewing the contents of a directory. To restrict permissions to
the directory, click on the Directory tab in the Properties dialog box.
13. Select the appropriate permissions that you want to grant for the Web application
directory. The permissions that you can grant are

§ Script Source Access. When you check this option, users are able to

browse the code for the application.
§ Read. When you check this option, users can browse and download

Web pages from the virtual directory of the application. You need to
check this option to allow users to browse your Web application.

§ Write . When you check this option, users are able to upload files to the
physical directory that corresponds to the virtual directory of the Web
application.

§ Directory Browsing. When you check this option, users are able to view
the contents of a directory if they type the path of the directory instead of
the path of a Web form.

§ Log Visits. When you check this option, the Web server logs details of
all requests that it processes.

§ Index This Resource. When you check this option, the Microsoft
Indexing Services index the Web pages in the virtual directory.

14. Click on Apply. Your changes will be applied to the Web site configuration.
15. Click on OK. The Properties dialog box will close.

Now that you have secured the virtual directory of the application, you can configure
Web server log files to log details of requests that are processed by the Web server.
These logs are useful for determining the load on the Web server or problems that it
might encounter. I will now explain the steps to configure Web server log files on the
Web server.

Configuring Web Server Log Files

IIS provides a number of formats for Web server log files. You can specify the format, the
duration, and the location of log files by using Internet Services Manager. The log file
formats that are supported by IIS are

§ Microsoft IIS log file format. The Microsoft IIS log file format records
basic information about Web requests. The information includes the IP
address of the client, the user name, the request date and time, and the
number of bytes of data exchanged while processing the request.

§ NCSA common log file format. The NCSA common log file format also
records details of requests processed by the Web server. However, the
details recorded for each request are not as comprehensive as the
details that are recorded by the Microsoft IIS log file format.

§ ODBC logging. The ODBC logging format records Web server activity in
an ODBC-compliant database, such as Microsoft Access or Microsoft
SQL Server.

§ W3C extended log file format. The W3C extended log file format is the
default format that is used by IIS. This format records the most detailed
description of a Web request and can be customized to record only data
that is relevant to analysis.

Now that you have examined the log file formats, I will describe the steps to select one of
these formats using Internet Services Manager. Open Internet Services Manager and
follow these steps to configure the log file format, the frequency of logging, and the
location of log files.
1. Right-click on Default Web Site in Internet Services Manager. A shortcut menu will
appear.
2. Click on Properties. The Default Web Site Properties dialog box will open. Make sure
that the Web Site tab of the dialog box is selected.
3. Click on the Active Log Format drop-down list. The items of the list will be displayed.
4. Select a logging format. The format that you select will become the active logging
format.
5. To specify the location and frequency for log files, click on Properties. The Extended
Logging Properties dialog box will open.

6. Select a log time period from the New Log Time Period group and specify the location
of log files in the Log File Directory field.

7. Click on OK. The Extended Logging Properties dialog box will close, and the Default
Web Site Properties dialog box will reappear.

Note The default location for log files is in the C:\Winnt\System32\
LogFiles directory.

8. Click on Apply. The changes that you made will be applied.
9. Click on OK. The Default Web Site Properties dialog box will close.
This completes the discussion on securing ASP.NET applications using IIS. However,
ASP.NET also includes a robust authentication mechanism that can provide even
greater security for a Web site. In the next section, I will examine the implementation of
authentication in ASP.NET.

Implementing Authentication in ASP.NET

In addition to IIS, ASP.NET implements its own authentication mechanism. This
mechanism is based on the XML-based configuration of the application in the
Web.config file.

In this section, I will describe the types of authentication mechanisms supported by
ASP.NET. Then, I’ll examine the steps to implement two authentication mechanisms—
Forms authentication and Windows authentication.

Types of Authentication in ASP.NET

ASP.NET supports three types of authentication mechanisms—Forms authentication,
Passport authentication, and Windows authentication.

§ Forms authentication. The Forms authentication mechanism enables
you to use a log-on form to authenticate users before they access the
Web application. When users request a resource on the Web site, the
application determines whether the user is authenticated. If the user is
not authenticated, the Web application directs the user to a pre-defined
log-on form. When the user successfully logs on using the log-on form,
he or she is redirected to the resource that was initially requested.

§ Passport authentication. The Passport authentication mechanism is
based on the Microsoft Passport authentication service. The Microsoft
Passport authentication service enables you to authenticate users
against their accounts with the service. See Chapter 1, “Introducing the
.NET Initiative,” for more information on Passport authentication.

§ Windows authentication. The Windows authentication mechanism
utilizes the user’s account in the Windows 2000 domain for
authentication. This type of mechanism is typically used for a corporate
intranet, where each user who needs to access the Web site has a user
account in the Windows 2000 domain.

Now that you have examined the types of authentication mechanisms, you should learn
how to implement Forms authentication and Windows authentication in a Web
application.

Implementing Forms Authentication

In ASP.NET, the Web.config file is primarily responsible for implementing authentication
on a Web site. This XML-based file includes two elements that are involved in
authentication—<authentication> and <authorization>. In addition, when you use Forms
authentication, you also need to use the <forms> element.

Before I explain how to implement Forms authentication on a Web application, think for a
moment about these elements.

§ <authentication>. The <authentication> element is used to configure the
mode of authentication on a Web site. It includes an attribute called
mode that specifies the type of authentication implemented on a Web
site. The mode attribute can have four values: Windows, Passport,
Forms, or None.

§ <authorization>. The <authorization> element specifies the list of users
who are allowed to access a Web application. This element includes two
sub-elements—<allow> and <deny>. You can specify the list of users
who are allowed to access the Web site in the <allow> tag and the list of
users who are not allowed to access the site in the <deny> tag. The
<allow> and <deny> tags also accept the wildcard entries ? and *. The ?
symbol represents anonymous users who access the Web site, and the *
symbol represents all users who access the Web site.

§ <forms>. The <forms> element is a sub-element of the <authentication>
element. When you implement Forms authentication, the <forms> tag
specifies the default extension of the cookie that is generated for
authenticated users with the name attribute. You can also specify the
name of the form to which an unauthenticated user is redirected by using
the loginUrl attribute. Finally, you can specify the amount of time, in
minutes, for which a user session is valid by using the timeout attribute.

1. Double-click on the Web.config file in the Solution Explorer. The file will open in the
XML Designer.
2. Locate the <authentication> element in the Web.config file. Change the value of mode
from Windows to Forms.
3. Add a forms sub-element to the <authentication> element. Specify the value of the
loginUrl attribute as login.aspx and the name as .ASPXFORMSAUTH, which is the
default extension of cookies that are generated by ASP.NET applications.

4. Next, restrict anonymous access to the Web application by using the <deny> sub-
element of the <authorization> element. This will ensure that users who have not been
authenticated by the Web application cannot access any page except the login.aspx
page.

5. Run the application. You will notice that when you request the default.aspx page, you
are redirected to the login.aspx page. The address of the default.aspx page is passed as
a query string to the login.aspx page.

Now, you need to write the code for the Click event of the Submit button to authenticate
users and redirect them to the default.aspx page. To authenticate a user, you need to
use the FormsAuthentication class of the System.Web.Security namespace. The
methods of the FormsAuthentication class that provide the required functionality of
Forms authentication are

§ Authenticate . The Authenticate method is used to validate the user
name and password against a data source.

§ RedirectFromLoginPage . The RedirectFromLoginPage method is used
to send the page that the user had initially requested to the log-in page in
the query string. The RedirectFromLoginPage function declares a user
as authentic and redirects the user to the originally requested page.

§ SignOut. The SignOut function logs a user off the Web application.

Implementing Windows Authentication
Implementation of Windows authentication is straightforward. First, you need to disable
anonymous access on IIS. The steps to disable anonymous access were described in
the “Securing a Virtual Directory” section earlier in this chapter.
After you disable anonymous authentication at IIS, you can change the settings of the
Web.config file to enable Windows authentication on the Web site. In this section, I will
implement Windows authentication on the authentication application that you created in
the previous section.

To implement Windows authentication in an application, open the application and follow
these steps.
1. Double-click on the Web.config file in the Solution Explorer. The file will open in the
XML Designer.
2. Change the value of the mode attribute of the <authentication> element to enable
Windows authentication.
3. Specify the list of users who are allowed to access the Web site using the <allow>
element.
4. Deny access to all other users by using the <deny> element.

With the implementation of Windows authentication, I have completed my discussion on
securing ASP.NET Web applications. This completes the development of a Web
application. To distribute your application, you should create a deployment project that
allows you to install the Web forms of your application on the destination computer. In
the next chapter, you’ll learn how to deploy your Web application by creating a
deployment project in Visual Studio .NET.

Chapter 23: Deploying ASP.NET Applications

Overview

Deploying ASP.NET applications can be as simple as creating a virtual directory on the
destination computer and copying the .aspx files to the directory. Though this is an easy
way to deploy applications, it is not an efficient one. What if the computer on which you
want to deploy the application is not accessible on the local network? Or what if you do
not know the configuration of that computer? In such a scenario, how would you ensure
that the installation process is efficient and error free?

You have greater control over the deployment of ASP.NET applications if you create a
deployment package in Visual Studio .NET and use the package to deploy your
applications. For example, you can ensure that the destination computer fulfills the
minimum hardware requirements before the application is installed. You can also ensure
that the .NET Framework run-time files are available on the destination computer, and so
on. In this chapter, you’ll learn how to:
§ Configure a deployment project to deploy a solution
§ Deploy an application using a deployment project

Configuring a Deployment Project

A solution can include a number of projects. When you create an ASP.NET application,
Visual Studio .NET creates a solution and adds a project for your application by default.
When you want to deploy the application, you need to add a deployment project to the
same solution and configure the deployment project.

In this section, you will learn how to add a deployment project to the MySourceCode
application. Then, you will configure the deployment project to customize it for your
application’s needs.

Adding a Deployment Project

To add a deployment project to an ASP.NET solution, follow these steps.
1. Double-click on the solution file to which you want to add a deployment project. (The
solution file has the .sln extension.) The solution will open in Visual Studio .NET.

2. Right-click on the name of the solution in the Solution Explorer. A shortcut menu will
appear.
3. Move the mouse pointer to Add. A submenu will appear.
4. Click on New Project. The Add New Project dialog box will open.

5. Click on the Setup and Deployment Projects option in the Project Types list. The
project templates available in the Setup and Deployment Projects option will appear in
the Templates list.
6. Click on Web Setup Project. The option will be selected.

Note The Web Setup Project option is used to deploy ASP.NET Web

applications and Web services. You can select other options to
deploy Windows applications and components.

7. Type the name of the project in the Name text box.
8. Click on OK to add the Web Setup Project to the solution. The project will appear in
the Solution Explorer.

Understanding the Deployment Editors

If you click on the View menu and move the mouse pointer to Editor, you will see the
deployment editors available in Visual Studio .NET.

The editors that are available for deploying Web applications are
§ File System. The File System editor simulates the directory structure

that would be created on the destination computer. Use this editor to
configure the directory structure and add project files to the deployment
project.

§ Registry. Occasionally, you might need to store information, such as the

configuration of the application, in a Windows registry. You can specify
key and value pairs for such information in the Registry editor.

§ File Types. When you need to associate specific file types with your
application, you can use the File Types editor. Although you might use
this editor more often in Windows applications, it comes in handy for
Web applications as well, because you can associate application
configuration files or other data files with your Web application.

§ User Interface. The deployment package created in Visual Studio .NET
has an interface that allows users to select a number of options, such as
the destination directory or the type of installation. You can use the User
Interface editor to customize the interface of your application.

§ Custom Actions. Often, you need to execute specific tasks to complete
the installation and configuration of your application. For example, you
might need to install a database and run a custom script to populate it, so
the database can be used by your ASP.NET application. Such tasks,
which are not associated directly with the application, are known as
custom tasks. You can use the Custom Actions editor to perform these
tasks.

§ Launch Conditions. The Launch Conditions editor ensures that the
software and hardware requirements on the destination computer are
fulfilled before a user can install an application. For example, when a
user installs your ASP.NET application, the Launch Conditions editor can
ensure the availability of IIS and the .NET Framework run-time files.

In most of this chapter, you will use these deployment editors to configure your
deployment project.

Adding Project Output to the Deployment Project

To install your application on the destination computer, you need to add project files to
the deployment project using the File System editor. Make sure that the File System
editor is open before you begin these steps.
1. Click on View. The View menu will appear.
2. Move the mouse pointer to Editor. The Editor submenu will appear.
3. Click on File System. The File System editor will open.
4. Click on Project. The Project menu will appear.
5. Move the mouse pointer to Add. The Add submenu will appear.
6. Click on Project Output. The Add Project Output Group dialog box will open.

7. Press and hold the Ctrl key and click on Primary Output and Source Files. The
Primary Output and Source Files options will be selected.

8a. Choose Release .NET from the Configuration list. The active configuration of the
project will be set to Release.
OR
8b. Choose Debug .NET from the Configuration list. The active configuration of the
project will be set to Debug.

Tip In the Add Project Output Group dialog box, you can select the
components of an ASP.NET project that you want to add to the
deployment project. For example, if you want to distribute the
primary output of your project, you should select the Primary Output
option. Similarly, if you want to distribute the source files, you should
select the Source Files option.

9. Click on OK. The Add Project Output Group dialog box will close, and the primary
output and source files of the ASP.NET application will be added to the deployment
project.

Adding a License Agreement to the Deployment Project

Commercial software usually includes a license agreement that the user needs to accept
before proceeding with the installation. When you package your application, you can
include a license agreement as specified by your organization, so that a user agrees to
the terms and conditions before using the application.
To add a license agreement to the deployment project, you need to use the File System
and User Interface editors. Before you use these editors, you need to create an RTF
(Rich Text Format) file that specifies the license agreement.

Save your license agreement in RTF format, and then follow these steps to add the
agreement to your application.
1. Click on Project. The Project menu will appear.
2. Move the mouse pointer to Add and select File. The Add Files dialog box will open.
3. Navigate to the license agreement file in the Add Files dialog box.
4. Select the license agreement file and click on Open. The license agreement file will be
imported into the deployment project and will appear in the Web Application Folder.

5. In the Web Application Folder, click and hold the license agreement file and drag it to
the Bin folder. The license agreement file will be placed in the Bin folder.

6. Click on View. The View menu will appear.
7. Move the mouse pointer to Editor and select User Interface. The User Interface editor
will open.

Tip All data files pertaining to an application are usually stored in the Bin
folder. Therefore, it is a good idea to store the license agreement in
the Bin folder.

Understanding the Installation Types

In the User Interface editor, two types of installations are visible: Install and
Administrative Install.

§ Install. The screens listed in the Install installation type appear when a
user installs an application on an individual computer.

§ Administrative Install. Network administrators can use the
Administrative Install installation type to make an application available
for installation over a network.

Every installation type has three stages—Start, Progress, and End. These stages denote
the stages of installation that an application undergoes. Each stage has one or more
dialog boxes associated with it.

§ Start. The Start stage is used for collecting information from a user
about the location and the components of the application. By default,
this stage includes three dialog boxes: Welcome, Installation Address,
and Confirm Installation. These dialog boxes display a welcome note,
prompt for the location of application files, and confirm that the user is
ready to install the application, respectively. However, you can add
more dialog boxes to the Start stage to customize the installation
program. For example, you can add a License Agreement dialog box
to display a license agreement, or you can add a Checkboxes dialog

box to allow the user to select the components that should be
installed.

§ Progress. The Progress stage displays a Progress dialog box, which
contains a progress bar to show what fraction of the application has
been installed.

§ End. The End stage is the last stage of the installation process. It is
composed of only one dialog box—Finished. The screen notifies the
user that the installation was completed successfully.

Note If you remove all the dialog boxes from the User Interface editor,
your installation program will have no interface. Thus, the program
will have an unattended installation, in which the user need not
intervene.

Adding the License Agreement to the Installation Program

To add a license agreement to the installation program, you add a License Agreement
dialog box from the User Interface editor.
1. Click on the Start stage in the User Interface editor. The Start stage will be highlighted,
and the Action menu option will appear on the menu bar.

2. Click on Action. The Action menu will appear.
3. Click on Add Dialog. The Add Dialog dialog box will open.

4. Click on License Agreement. The option will be selected.
5. Click on OK. The Add Dialog dialog box will close and the License Agreement dialog
box will be added to the User Interface editor.

Moving the License Agreement

The license agreement should conventionally appear immediately after the Welcome
screen, so that users proceed to the installation options only if they accept the license
agreement. Follow these steps to change the placement of the license agreement.
1. Click on License Agreement in the Start stage. The License Agreement dialog box will
be selected.
2. Press and hold the mouse button and drag the License Agreement dialog box to the
Welcome dialog box. The License Agreement dialog box will move below the Welcome
dialog box. Next, you need to associate the License Agreement dialog box with the
license agreement file that you imported in RTF format.

3. Right-click on License Agreement. The shortcut menu will appear.
4. Click on Properties Window in the shortcut menu. The Properties window for License
Agreement will appear.
5. Choose Browse from the LicenseFile list. The Select Item in Project dialog box will
open.

6. Double-click on Web Application Folder. The contents of the folder will be listed in the
Select Item in Project dialog box.
7. Double-click on Bin. The license agreement that you added to the Bin folder will be
listed in the Select Item in Project dialog box.
8. Select the license agreement and click on OK. The Select Item in Project dialog box
will close, and the license agreement file will be associated with the License Agreement
dialog box.

Redirecting Users to a Web Site

At the end of an installation program, you often need to redirect users to a Web page
where they can register the software. Such functionality can be achieved by using the
Custom Actions editor. You will recall that the Custom Actions editor is used to perform
custom tasks at the end of the installation process. To redirect users to a Web page at
the end of the installation process, follow these steps.
1. Click on File. The File menu will appear.

2. Move the mouse pointer to Add Project and select New Project. The Add New Project
dialog box will open.
3. Click on Visual Basic Projects in the Project Types pane. The project templates
available in the Visual Basic Projects category will appear in the Templates pane.
4. In the list of available templates, click on Console Application. The Console
Application project type will be selected.

5. Specify the name of the console application in the Name text box.
6. Click on OK. The new project will be added to the deployment project, and the main()
function of the application will be visible.

7. Code the Start function of the Process class to redirect the user to a Web site.

8. Click on the Save button to save the Module1.vb file.
9. Click on Close for the Module1.vb file. You will return to the screen on which you
started the steps of this section.

You have successfully added to the solution a project that redirects the user to a Web
site. Now you need to add the output of the project to the deployment solution. To do so,
switch to the File System editor and follow these steps.
1. Click on Project. The Project menu will appear.
2. Move the mouse pointer to Add and select Project Output. The Add Project Output
Group dialog box will open.
3. Choose the project in which you specified the main() function from the Project list.
4. Click on Primary Output. The option will be selected.
5. Click on OK. The Add Project Output dialog box will close, and the output of the
project that you selected in Step 3 will be added to the deployment project.

To add the custom action to your project, you need to use the Custom Actions editor.
1. Click on View. The View menu will appear.
2. Move the mouse pointer to Editor and click on Custom Actions. The Custom Actions
editor will open.
3. Click on Install. The Install option will be selected.

4. Click on Action. The Action menu will be selected.
5. Click on Add Custom Action. The Select Item in Project dialog box will open.
6. Double-click on Web Application Folder. The contents of the Web Application Folder
will appear in the Select Item in Project dialog box.

Tip In the Custom Actions editor, you can specify different actions for

different stages of an application. For example, if you create
databases in the Install stage, delete existing application databases
in the uninstall stage. Similarly, in the Rollback stage, you can
delete applications components that were not installed correctly.

7. Click on the primary output for the project that redirects the user to a Web site. The
option will be selected.
8. Click on OK. The custom action will be added to the deployment project.

9. If you want, you can change the name of the custom action.

10. Click on View. The View menu will appear.
11. Click on Properties Window. The Properties window will appear.
12. Double-click on InstallerClass in the Properties window for the custom action. The
value of the InstallerClass property will change to False.

You have studied all of the important concepts pertaining to deployment of ASP.NET
applications. In the next section, you’ll look at ways to optimize the installation program.

Optimizing the Installation Program

There are several ways to optimize an installation program. In this section, I will explain
three aspects of optimizing an installation program—by changing the name of the virtual
directory, adding bootstrapper files, and reducing the size of the program.

Changing the Name of the Virtual Directory

Often, you will want to use a particular name for the virtual directory of your ASP.NET
application. Developers usually associate the name of the virtual directory with the name
of their organization, so the Web application is easily accessible. To specify a name for
the virtual directory, follow these steps.

Tip The InstallerClass property should be True only if the custom action
is a .NET ProjectInstaller class.

Note Even if you specify a name for the virtual directory, a user can
change it when installing your application. However, the name that
you specify is the default name that appears when the installation
program is run.

1. Click on View. The View menu will appear.
2. Move the mouse pointer to Editor and click on File System. The File System editor will
open.
3. Right-click on the Web Application Folder. A shortcut menu will appear.
4. Click on Properties Window in the shortcut menu. The Properties window for the Web
Application Folder will appear.
5. Double-click on VirtualDirectory. The name of the virtual directory will be selected.

6. Type a new name for the virtual directory and press the Enter key.

After you change the name of the virtual directory, the new name will be the default
name that appears when a user installs your application.

Adding Bootstrapper Files to the Deployment Project
Windows and Web application deployment projects that you create in Visual Studio .NET
are compiled as MSI (Microsoft Installer) files. MSI files use the Microsoft Windows
Installer Service to install applications on a computer.

To run MSI files created in Visual Studio .NET, a user must have Windows Installer 1.5
or later installed on his or her computer. The user will not be able to run the installation
program if version 1.5 of Windows Installer is not available. However, Visual Studio .NET
offers a solution to this problem by way of bootstrappers, which include the necessary
files or links to Web sites for installing the latest version of Windows Installer. In Visual
Studio .NET, you can include the Windows or Web bootstrapper in your application. The
bootstrapper provides the necessary files to install Windows Installer 1.5 if it is not
available on the destination computer. To include bootstrapper files in your application,
follow these steps.
1. Right-click on the name of the project in the Solution Explorer. A shortcut menu will
appear.
2. Click on Properties. The Property Pages dialog box for the deployment project will
open.

Tip The MSI technology optimizes application deployment by ensuring

that any component that is accidentally deleted by a user can be
automatically installed without adversely affecting the application’s
performance. The MSI technology also enables you to install only
those components that you want to use, which optimizes the use of
disk space.

3. Choose Windows Installer Bootstrapper from the Bootstrapper drop-down menu. The
option will be selected.

Tip The Windows Installer Bootstrapper option packages the files

required to run the Windows Installer service in the deployment
project. You can also make these files available on a Web site and
select the Web Bootstrapper option to direct users to a Web site if
the files are not available on their computers.

4. Click on Apply. The changes that you made will be applied to the project.
5. Click on OK. The Property Pages dialog box will close.

Reducing the Size of the Deployment Project

If you create a deployment project in Visual Studio .NET by retaining most of the default
options, the size of the deployment program will be anywhere from 16–20 MB. You might
wonder whether there is a way to reduce the size of the deployment program. There is
an easy solution—you need to exclude the .NET run-time files from the deployment
project. This reduces the size of the deployment project considerably—by about 75
percent. To exclude the .NET run-time files, follow these steps.

Caution If you exclude the .NET run-time files, be sure that these files
are available on the destination computer. Otherwise, a user
will not be able to run your application.

1. Click on View. The View menu will appear.
2. Click on Solution Explorer. The Solution Explorer will appear.
3. Locate the Detected Dependencies folder in the deployment project.
4. In the Detected Depen- dencies folder, right-click on dotnetfxredist_x86_enu.msm. A
shortcut menu will appear.

5. Click on Exclude to exclude the .NET run-time files from your project. A check mark
will appear next to the Exclude option to signify that the option is enabled, and the
shortcut menu will disappear.

When you exclude the .NET run-time files from your project, the size of the project is
typically reduced to 1–3 MB.

Checking for Availability of Prerequisite Software

ASP.NET applications can be installed only on IIS. Therefore, you should make sure that
IIS is available on the destination computer before a user installs your application.
Similarly, if you have excluded the .NET run-time files from your application, you should
make sure that these files are available on the destination computer.

You can use the Launch Conditions editor to check for the presence of files, software,
and hardware on the destination computer. To check for the presence of .NET run-time
files, follow these steps.

Note The dotnetfxredist_x86_enu.msm file is a merge module that
contains the .NET run-time files. Merge modules are packaged
components that can be included in other deployment projects.

1. Click on View. The View menu will appear.
2. Move the mouse pointer to Editor and click on Launch Conditions. The Launch
Conditions editor will open.
3. Click on Action. The Action menu will appear.
4. Select Add .NET Framework Launch Condition. A launch condition will be added to
the deployment project.

5. Type a new name for the condition, if you want.

Tip When a launch condition is not fulfilled on the destination computer,

the installation program displays an error message. You can
customize this message by changing the value of the Message
property for a launch condition. However, I suggest that you retain
the default message that is specified by Visual Studio .NET because
the default message can automatically change to different

languages depending on the language that a user runs on the
operating system.

Note The launch condition for IIS is added by default to the deployment
project.

Deploying an Application

In the final stages of deploying your application, compile the application and run the
installation program to ensure that the application is deployed successfully. This section
describes the procedure for compiling and testing your installation program.

Compiling the Deployment Project

You should always compile your application in the Release project configuration to
optimize it. If you have not already changed the project configuration to Release, do it
now by choosing Release from the Solution Configurations list on the toolbar. To compile
your application, follow these steps.
1. Click on Build. The Build menu will appear.
2. Click on Build WebDeployment. (WebDeployment is the name of the project in this
case. The name of this option will vary for you, depending on what you named the
project.) The Output window will appear, and your solution will be compiled.

Running the Installation Program

After you compile your application successfully, an MSI file will be created in the Release
subfolder of the deployment project’s folder. You should test this deployment file for:

§ All launch conditions that you have specified
§ All custom actions that you have specified
§ Successful installation of the application
§ Successful uninstallation of the application

Checking for Launch Conditions

To check for the .NET run-time files launch condition, copy the deployment file (the file
with the MSI extension) and its associated files (all of the files in the Release subfolder)
to a computer that does not have the .NET run-time files installed. Then try to run the
installation.

Tip If you have trouble locating the MSI file for the deployment project,

scroll up in the Output window to see the exact location of the file.

Installing and Uninstalling the Application

To install the application:
1. Double-click on the MSI file. The installation program will begin.
2. On the Welcome screen of the installation program, click on Next. The License
Agreement screen will appear and will display the license agreement that you specified
in the RTF file.
3. Click on I Agree. The Next option will be enabled.

4. Click on Next. The Select Installation Address screen will appear. Notice that the
default name for the virtual directory you specified is displayed here.
5. Click on Next. The Confirm Installation screen will appear.

6. Click on Next. A progress bar will indicate the progress of the installation. This will be
followed by the Installation Complete screen. Simultaneously, Internet Explorer will
launch and the Web site that you had specified for the custom action will open.

7. Close Internet Explorer.

8. Click on the Close button on the Installation Complete screen. The installation
program will close.

After you successfully install your application, you should uninstall it to confirm that the
uninstallation process operates smoothly. To uninstall an application, select the
Add/Remove Programs option from the Control Panel and perform the uninstall steps as
you would for any other Windows application.

You have now completed your learning of ASP.NET. Deploying is the last stage of an
application’s development. When you have successfully deployed your application, you
can be sure that you have developed your application correctly!
As the next step, you can create your own ASP.NET application to master the concepts
that you learned in the book. Before you do that, take a look at Appendix A, “Keyboard
Shortcuts in Visual Studio .NET,” which lists the commonly used shortcut keys in Visual
Studio .NET. Those of you familiar with Visual C# can read Appendix B, “Developing
ASP.NET Applications in Visual C#,” to learn how ASP.NET applications can be created
in Visual C#. If you have an ASP 3.0 application available, you should also read
Appendix C, “Migrating from ASP 3.0 to ASP.NET,” which describes the steps to migrate
an ASP 3.0 application to ASP.NET. Finally, Appendix D, “Online Resources for
ASP.NET,” is a useful reference tool.

Happy coding!

Appendix A: Keyboard Shortcuts in Visual
Studio .NET
It is often easier and quicker to perform tasks using the keyboard instead of the mouse.
For example, instead of clicking on the View menu and then selecting Solution Explorer,
you can press Ctrl+Alt+L.

In this appendix, I have provided a categorized list of useful keyboard shortcuts that you
can use in Visual Studio .NET. With practice and experience, you will gradually become
accustomed to using keyboard shortcuts more often than you use menu options.

Keyboard Shortcuts for the Code Editor
In the Code Editor, you can use keyboard shortcuts to move, copy, and delete text.
Table A.1 lists the commonly used shortcut keys in the Code Editor.
Table A.1: Keyboard Shortcuts for the Code Editor

Task Shortcut
Key(s)

Copy selected text from the Code Editor Ctrl+C and
Ctrl+Insert

Cut selected text from the Code Editor Ctrl+X and
Shift+Delete

Cut one line of text from the Code Editor Ctrl+L

Paste text at the insertion point Ctrl+V and
Shift+Insert

Move between text in the ClipboardRing Ctrl+Shift+V and
Ctrl+Shift+Insert

Undo the last change made Ctrl+Z or
Alt+Backspace

Redo the last change that was undone Ctrl+Y or
Ctrl+Alt+Backsp
ace

Save the currently open file Ctrl+S

Save all open files Ctrl+Shift+S

Open the Code Editor window F7

Transpose characters at the insertion point Ctrl+T

Insert auto-complete entry Tab

Format and indent code Ctrl+K and then
Ctrl+D

The preceding table summarized all of the important tasks that you perform in the Code
Editor. The next section describes the shortcut keys for the Form Designer.

Keyboard Shortcuts for the Form Designer
The Form Designer is used to design forms. Visual Studio .NET offers a number of
default shortcut keys that can be used to align controls on the forms and change their
properties. Some of the shortcut keys are listed in Table A.2.
Table A.2: Keyboard Shortcuts for the Form Designer

Task Shortcut Key

Increase the indentation of a control Ctrl+T

Decrease the indentation of a control Ctrl+Shift+T

Invoke the Properties window for a control F4

Open the Form Designer window Shift+F7

Toggle between HTML and Design views Ctrl+PageDown

Change to Full Screen view Shift+Alt+Enter

Make text bold Ctrl+B

Underline text Ctrl+U

Italicize text Ctrl+I

Keyboard Shortcuts for the Visual Studio .NET IDE
There are some shortcut keys that are applicable to the Visual Studio .NET IDE
(Integrated Development Environment). These keys work irrespective of the component
of Visual Studio .NET that you run. The shortcut keys are listed in Table A.3.

Table A.3: Keyboard Shortcuts for the Visual Studio .NET IDE

Task Shortcut
Key

Open the Server Explorer Ctrl+Alt+S

Open the Toolbox Ctrl+Alt+X

Open the Solution Explorer Ctrl+Alt+L

Open the Resource view Ctrl+Alt+E

Open the Class view Ctrl+Alt+C

Open Dynamic Help Ctrl+F1

Add a new item to the project Ctrl+Shift+A

Add an existing item to the project Shift+Alt+A

Save all project files Ctrl+Shift+S

Create a new project Ctrl+Shift+N

Debug an application F5

Start an application without debugging Shift+F5

Create a breakpoint (in the Code Editor) Ctrl+B

Remembering Shortcuts

The easy way to remember keyboard shortcuts is not to learn them by heart. Instead,
remember them as you use them. After going through the list of shortcuts given here,
you might retain quite a few of them, especially for the tasks that you perform frequently.

Appendix B: Developing ASP.NET
Applications in Visual C#

Overview

To code ASP.NET applications, you can use Visual Basic .NET or Visual C#. I have
explained almost all of the code snippets in this book using Visual Basic .NET. However,
Visual C# offers an equally easy and powerful programming approach by enabling you to
perform the same tasks that you can perform in Visual Basic .NET. The pages that you
created using Visual Basic .NET can be easily created in Visual C#. The purpose of this
appendix is to introduce you to Visual C# and highlight the differences between
programming in Visual Basic .NET and Visual C#. In this appendix, you’ll learn how to:
§ Program Visual C# applications in Visual Studio .NET
§ Convert Visual Basic .NET code into Visual C# code

Programming Applications in Visual C#

The syntax of Visual C# is quite similar to the syntax of Visual C++. If you have
programmed in Visual C++, you will have no problem creating applications in Visual C#.
However, if you are making a transition from Visual Basic .NET to Visual C#, there are
quite a few differences in the language syntax. You also need to get accustomed to the
slightly different way of performing the same tasks in the two languages when you use
Visual Studio .NET.

This section will provide you with adequate knowledge to start coding your applications
in Visual C#. First, I will examine the differences in the syntax of Visual C# and Visual
Basic .NET. Next, I will summarize how coding Visual C# applications in Visual Studio
.NET is different than coding Visual Basic .NET applications.

Syntactical Differences in Visual C# and Visual Basic .NET

Syntactical differences make it easy for you to differentiate between Visual Basic .NET
and Visual C#. One of the most basic differences is that each statement in Visual C#
ends with a semicolon, which is not the case in Visual Basic .NET.

In this section, I will list differences in the programming syntax of Visual Basic .NET and
Visual C#.

Using Semicolons

You need to place a semicolon at the end of each statement in Visual C#. Note that
when I say statement, I do not mean that you need to place semicolons at the end of
conditional clauses, such as if and while.

Thus, if you have a code snippet that changes the text displayed in a label to Hello
World, the code in Visual Basic .NET is written as:

Label1.Text="Hello World!"

The same code in Visual C# would be written as:

Label1.Text="Hello World!";

Understanding Case Sensitivity

Visual C# is case sensitive. This is a marked difference from Visual Basic .NET, in which
you can declare a variable as MyVariable and use it as myvariable. The following code
snippet would work fine in Visual Basic .NET.

Dim intCounter as Integer

intcounter=intcounter+1

However, when written in the C# syntax, the same code will generate an error, such as
“The name ‘intcounter’ does not exist in the class or namespace,” because you have
changed the case of the term intcounter.

int intCounter

intcounter=intcounter+1;

Using Braces

In Visual C#, you need to use braces for different blocks of code. This is not required in
Visual Basic .NET. For example, the following code will work fine in Visual Basic .NET.

Namespace RatingArticle

 Public Class ClArticleRating

 Dim SelOption as Integer

 Public Sub GetSelection()

 If Opt1.Checked=True Then

 SelOption=1

 End If

 End Sub

 End Class

End Namespace

However, in Visual C#, you would need to write the same code as:

namespace RatingArticle

{

 public class ClArticleRating

 {

 int SelOption;

 public void GetSelection()

 {

 if (Opt1.Checked)==true

 {

 SelOption=1;

 }

 }

 }

}
Notice that in the preceding code, I have enclosed the expression Opt1.Checked in
parentheses. To learn more about why this is necessary, refer to the “Using Selection
and Conditional Statements” section later in this appendix.

Declaring Variables

To declare variables in Visual Basic .NET, you need to use the Dim keyword. However,
variables in Visual C# are declared without using the Dim keyword, and the data type of
the variable is given before the name of the variable. The following code snippet
illustrates variable and object initialization in Visual Basic .NET.

Dim intVar1 as Integer

Dim myCommand as SqlCommand

The equivalent C# code for declaring these variables is

int intVar1;

SqlCommand myCommand;

Declaring Functions

When you declare functions in Visual Basic .NET, you need to append the return type of
the function to the end of the declaration. For example, if a function returns a Boolean
value, the function is written as:

Public Function CheckNumber(Var1 as Integer) as Boolean

End Function

The same function is written in Visual C# as:

public bool CheckNumber(int Var1)

{

}

If a function returns a void in Visual Basic .NET, you use a subroutine.

Public Sub CheckNumber(Var1 as Integer, Var2 as Integer)

End Sub

For functions that do not return any values in Visual C#, you use the keyword void.

public void CheckNumber(int Var1, intVar2)

{

}

Importing Namespaces into an Application

Often, you need to import namespaces into your application to use the classes provided
by the .NET Framework class library. For example, you need to import the
System.Diagnostics namespace to use the debugging classes of the .NET Framework.
The syntax for importing namespaces in Visual Basic .NET is

Imports System.Diagnostics

The equivalent syntax in Visual C# is

using System.Diagnostics;

Using Selection and Conditional Statements

There are two important differences in the syntax of selection statements in Visual Basic
.NET and Visual C#. In Visual C#, the condition for which you want to check is placed in
parentheses. Also, the comparison operator in Visual C# (= =) is different than the
comparison operator in Visual Basic .NET (=).
I discussed the syntax of the if statement in the “Using Braces” section earlier in this
appendix. The Visual Basic .NET syntax of the while loop is similar to the syntax of the if
statement.

While counter<100

 AddNumbers()

End While

The equivalent syntax in Visual C# is

while (counter<100)

{

 AddNumbers()

}

One selection statement that differs significantly in Visual Basic .NET and Visual C# is
the Select Case statement (or the switch statement, as it is called in Visual C#). The
syntax of the Select Case statement in Visual Basic .NET is

Select Case myReader.GetInt32(10)

 Case 0

 lblDiff.Text = "Beginner"

 Case 1

 lblDiff.Text = "Intermediate"

 Case 2

 lblDiff.Text = "Advanced"

End Select

The equivalent switch statement in Visual C# is

switch (myReader.GetInt32(10))

{

 case 0:

 lblDiff.Text="Beginner";

 break;

 case 1:

 lblDiff.Text="Intermediate";

 break;

 case 2:

 lblDiff.Text="Advanced";

 break;

}
Tip Although I have used braces in the preceding statements, you can

omit the braces if only one statement follows the condition.

Understanding Comment Entries

The comment entries in Visual Basic .NET begin with the ‘ (apostrophe) symbol,
whereas the comment entries in Visual C# begin with the // symbol.

Visual C# also enables you to mark a block of code as a comment using the /* and */
block. An example of a multi-line comment is

/* This is a multiline comment in Visual C#.

For the same functionality in Visual Basic .NET,

you would have had to use the ‘ symbol in each line. */

Coding Visual C# Applications in Visual Studio .NET

Some of the tasks involved in creating a Visual C# application in ASP.NET are different
than the tasks involved in creating a Visual Basic .NET application. In this section, I will
list some of the tasks that you need to perform differently in Visual C#.

Adding Event Handlers

However, if you want to add an event handler in Visual C#, you need to use the
Properties window. Keep reading to see how you can add an event handler in Visual C#.

After you create a new project, add a TextBox control to its default form. Next, follow
these steps to add an event handler for the TextChanged event of the form.
1. Right-click on the TextBox control. A shortcut menu will appear.
2. Click on Properties. The Properties window will appear.
3. Click on the Events button. The list of events that are supported by the TextBox
control will appear.

4. Double-click on TextChanged. An event handler will be added for the TextChanged
event of the TextBox control.

After you add an event handler, the procedure to write the code for the event handler is
the same in Visual C# and Visual Basic .NET.

Deleting Event Handlers

Just as the procedure for adding event handlers is different in Visual C#, so is the
procedure for deleting event handlers. In Visual Basic .NET, you simply delete the
definition of the event handler to remove it. In Visual C#, you also need to delete the
declaration of the event handler.

Understanding the IntelliSense Feature in Visual C#
The IntelliSense feature of Visual Studio .NET works slightly differently in Visual Basic
.NET and Visual C#. If you type Private Property SelOption() As Integer and press
Enter in Visual Basic .NET, the following code will be added to the form.

Private Property SelOption() As Integer

 Get

 End Get

 Set(ByVal Value As Integer)

 End Set

End Property

However, if you type the equivalent statement in Visual C#, the definition of the property
will not be added to the form by default; you need to type it out. This is also the case with
conditional and selection statements.

Moving from Visual Basic .NET to Visual C#
In the previous section, you learned about the syntactical differences between Visual C#
and Visual Basic .NET. You also learned about the different programming practices in
the two languages. In this section, I will show you a practical implementation of the C#
code by writing the code for a user control in Visual C#.
The steps to create a control in Visual C# are exactly the same as the steps to create a
control in Visual Basic .NET. The only difference is that you need to follow the Visual C#
syntax. Therefore, in this section I will include the C#-equivalent code for the user control
that was created in Chapter 12, “Creating a User Control in ASP.NET,” using Visual
Basic .NET.

Designing a Control

The steps to add and configure these controls were discussed in Chapter 12. After you
add these controls to the form, you need to write the C# code for the user control.

Writing the Code for a Control

If you compare this code to the Visual Basic .NET code for the user control, you will
realize that the code follows the same logic but uses the Visual C# syntax.

Appendix C: Migrating from ASP 3.0 to
ASP.NET

Overview

If you have been using ASP for a long time, you might have written some applications in
ASP 3.0. You can migrate these applications to ASP.NET to benefit from the enhanced
features of ASP.NET.

Although the actual steps for migrating the application will depend on the structure and
the logic that you have used for your application, the basic steps to migrate an
application to ASP.NET are common across all applications. This appendix will walk you
through the steps to migrate an ASP 3.0 application to ASP.NET. In this appendix, you’ll
learn how to:
§ Prepare a Web site for migration
§ Migrate a site to ASP.NET

Preparing a Web Site for Migration

When you plan to migrate your Web site to ASP.NET, you should make a backup of your
site and the site databases, so that if anything goes wrong during the migration of the
site, you can revert to the ASP 3.0 Web site.

In this section, I will examine the steps to make a backup of a site and its databases.

Replicating the Virtual Directory

ASP 3.0 applications are deployed on IIS. Each application has a virtual directory
associated with it. The virtual directory maps to a local directory on the hard disk in which
the ASP 3.0 files for the application are stored.

When you decide to migrate your Web site, you should copy all of the ASP 3.0 files to a
new folder and make a virtual directory for the folder, so you have two copies of the
same Web site. You can then use either of the two copies to migrate your Web site to
ASP.NET.

To make a new virtual directory for your Web site, copy all of the files that are in the root
folder of your Web site to a new location and open Internet Services Manager. Internet
Services Manager is the administration tool for IIS; it can be accessed from the
administrative tools in Windows NT, 2000, and XP.

After you open Internet Services Manager, follow these steps to create a virtual directory.
1. Double-click on the name of the computer on which you want to create the virtual
directory. The list of Web sites installed on the computer will appear.

2. Right-click on the Default Web Site option. A shortcut menu will appear.

3. Move the mouse pointer to New. The New submenu will appear.
4. Click on the Virtual Directory option. The Virtual Directory Creation wizard will appear.

5. On the Welcome screen of the wizard, click on Next. The Virtual Directory Alias
screen will appear.

6. Type a name for the virtual directory that will be used to navigate to the application
and click on Next. The Web Site Content Directory screen will appear.

7. In the Directory text box, type the location of the directory in which the ASP pages of
the application are stored and click on Next. The Access Permissions screen of the
wizard will appear.

8. Retain the default access permissions for the virtual directory and click on Next. A
screen will appear to notify you that you have successfully completed the wizard.
9. Click on Finish to complete the creation.

When the wizard has finished, a virtual directory with the alias name that you specified in
Step 6 will be created. You can browse your Web applications by typing
http://computername/ aliasname, where computername is the name of the computer and
aliasname is the name of the virtual directory.

Backing up the Database

Most ASP sites access databases for displaying information on the Web site. You should
back up the database of your Web application to ensure that you can revert to it if the
site does not migrate successfully. To back up a SQL Server database, you can use
SQL Server Enterprise Manager.

To back up your database, open SQL Server Enterprise Manager (from the Microsoft
SQL Server submenu of the Programs menu) and follow these steps.
1. Right-click on the database that you want to back up. A shortcut menu will appear.
2. Move the mouse pointer to All Tasks and select the Backup Database option. The
SQL Server Backup dialog box will open.

3. Click on Add to add a backup device. The Select Backup Destination dialog box will
open.

4. Append the name of the backup file in the File Name text box and click on OK to
select the backup location. The Select Backup Destination dialog box will close and the
location that you specified will be listed in the Backup To list in the SQL Server Backup
dialog box.
5. Click on OK to back up the database. You will be notified when the backup is
complete.

After you have backed up your database, you are ready to migrate your Web application
to ASP.NET.

Migrating a Site to ASP.NET

ASP.NET applications can coexist with ASP 3.0 applications. Therefore, you don’t need
to install ASP 3.0 and ASP.NET applications on different Web servers. You can also
continue to run your ASP.NET and ASP 3.0 applications on the same computer.

Migration of a Web application to ASP.NET is a three-step procedure. First, you need to
change the extension of ASP 3.0 Web pages from .asp to .aspx. When you change the
extension to .aspx, the page will be executed in the .NET Framework. Next, you need to
change the application code to make it compatible with ASP.NET. Finally, you can
optimize your application after you have migrated it. In this section, I will examine all
three of these tasks.

Renaming ASP.NET Pages

You need to change the extension of ASP 3.0 pages from .asp to .aspx. To do this,
navigate to the location of the ASP pages and change the file extensions the same way
as you would rename any other file.

If you are using the global.asa file for managing application variables, you need to
change the extension of the file from .asa to .asax. You should also note that you cannot
share application and session state information, which is initialized in the global.asa or
global.asax file, between ASP 3.0 and ASP.NET applications. Therefore, until the
migration of your Web site is complete, you will have to rely on a third-party solution to
share state data between your ASP 3.0 and ASP.NET applications.

Upgrading Application Code

After you rename your ASP files, you need to upgrade the code that is incompatible with
ASP.NET. Depending on the level of incompatibility with ASP.NET, you might have to
either tweak your code or completely revamp it.

In this section, I will list some of the tasks that you need to perform to upgrade your site
to ASP.NET. You might need to perform one or more of these tasks, depending on the
existing code in your Web application.

§ Use the @Page directive. The @Language directive on Web pages
needs to be changed to @Page. Thus, the directive
<%@Language=”VBScript”%> needs to be changed to <%@Page
Language=”VB”.

§ Pass values by reference explicitly. When calls to functions are made
in Visual Basic .NET, parameters are, by default, passed by value. This
is a deviation from Visual Basic 6.0, in which values are, by default,
passed by reference. Therefore, if you need to pass parameters by
value, use the ByRef keyword.

§ Enclose code in script blocks. In ASP 3.0, you can use code delimiters
(<% and %>) to code functions. However, in ASP.NET, all functions need
to be enclosed in the <script> block. By using the <script> block, you can
also increase the readability of your Web page by making it more
organized.

§ Discard render functions. In ASP.NET, you cannot use render
functions to alternate ASP code with HTML tags. You need to enclose
code to render text in a function and invoke the function when the text
needs to be rendered.

As an example of the render function, consider the following ASP 3.0 code.

Price: $<%= g_rsProduct.Fields("cy_list_price").Value %>

ISBN: <%= g_rsProduct.Fields("isbn").Value %>

<%= g_rsProduct.Fields("description") %>

This code is used to display the ISBN number and description of a product on a Web
form; it will not work in ASP.NET. To make the code work in ASP.NET, you should write
it in a function, as shown here.

<script language="vb" runat="server">

Sub DisplayDetails()

 Response.Write("Price: $" + _

 g_rsProduct.Fields("cy_list_price").Value)

 Response.Write("
ISBN: ")

 Response.Write(g_rsProduct.Fields("isbn").Value)

 Response.Write("

")

 Response.Write(g_rsProduct.Fields("description"))

End Sub

</script>
Although the preceding code snippet will work in ASP.NET, I would not recommend it
because ASP.NET offers a number of data binding server controls that enable you to
format and display data easily. In addition to data binding server controls, ASP.NET also
includes other features to help you optimize your Web site. Some of these features are
discussed in the next section.

Understanding Optimization Opportunities

There are several ways to optimize a Web application after you have migrated it from
ASP 3.0 to ASP.NET. For example, you can use the Web.config file to configure your
application. In this section, I will examine some of the aspects of a Web site that can be
optimized after the site has been migrated to ASP.NET.

§ Use the Web.config file. The Web.config file stores the configuration of
an ASP.NET application. If you use the Web.config file to configure your
application, you can implement directory-level configuration. Therefore,
one subdirectory of your Web application might be using Windows
authentication, and another directory might be using Forms
authentication. Such a provision does not exist when you configure your
application using IIS.

§ Use the concept of the code-behind file. In ASP.NET, you can
separate the application code from the HTML tags that are used to
render the page. This feature not only simplifies the structure of a page,
but also enables you to concentrate on the programming logic of your
application.

§ Port your application to Visual Studio .NET. When you upgrade your
application, it is a good time to port it to Visual Studio .NET. All you need
to do is create a blank solution and import each ASP.NET page into the
solution. After you port your application to Visual Studio .NET, you will be
able to perform all subsequent updates to the Web application using
Visual Studio .NET.

§ Implement user controls. You can implement the same functionality
across Web pages by creating a user control and using it on multiple
forms. By using the same control, you save yourself the effort of
replicating the same functionality on all Web forms.

§ Implement caching. ASP.NET includes extensive caching support.
Caching frequently used data can improve the performance of your Web
application considerably. See Chapter 18, “Caching in ASP.NET
Applications,” for more information on implementing caching in an
ASP.NET application.

§ Create a multi-tiered Web application. Although the code might be
complicated, adding a data layer to your application can enable you to

streamline data access in your application. Visual Basic .NET and Visual
C# are object-oriented; therefore, you can implement code for database
access in a class and create an object of the class on all of your Web
forms that require database access.

I have listed the important aspects of optimization here. However, when you upgrade
your Web application, you might be able to use other optimization features. For example,
you might use datasets to reduce the load on your database server. You can continue to
explore possibilities of optimization as you upgrade your Web site.

Appendix D: Online Resources for ASP.NET
There are more than 50 community and developer sites available for ASP.NET. If you
consider the wide acceptance of ASP.NET, many more will undoubtedly come! Although
it is not possible for me to list all of the sites, in this appendix I will provide you with a list
of sites that I found useful and which provide comprehensive information about
ASP.NET. You can refer to these sites while you continue learning about ASP.NET.
§ Microsoft ASP.NET (http://www.asp.net). This is the official Microsoft Web

site for ASP.NET. Microsoft ASP.NET provides useful tutorials for getting
started with ASP.NET. The Web site also includes a section that is dedicated
to server controls, where you can find and download useful server controls
free of cost. You can also read a number of articles by developers who have
implemented ASP.NET.

§ GotDotNet (http://www.gotdotnet.com). GotDotNet is the Microsoft
community Web site for Visual Studio .NET and ASP.NET. The site is well
organized and provides excellent articles and news updates on .NET. You
can browse this site frequently to get updated news on Visual Studio .NET
and ASP.NET.

§ Microsoft Corporation Web Site (http://www.microsoft.com). The official
Web site of the Microsoft Corporation provides extensive information on all
Microsoft technologies. Information about the latest developments taking
place at Microsoft can be found on this Web site.

§ Microsoft Developer Network (http://msdn.microsoft.com). The Microsoft
Developer Network Web site is the best online resource for developers of
Microsoft technologies. A favorite resource of developers, this site offers a
section dedicated to ASP.NET (http://msdn.Microsoft.com/net/aspnet) and
another section dedicated to Visual Studio .NET
(http://msdn.microsoft.com/vstudio/default.asp).

§ Microsoft Newsgroups (http://msdn.microsoft.com/newsgroups).
Microsoft Newsgroups enables you to participate in discussions with
developers of ASP.NET and other Microsoft technologies. It is an excellent
resource for resolving your queries with other developers.

§ Code Project (http://www.codeproject.com). A comprehensive resource on
.NET technologies, Code Project offers articles and code downloads on .NET
programming languages ranging from Visual C++ .NET to ASP.NET. The site
presents an easy-to-navigate interface and is updated daily with a range of
new articles and code snippets.

§ .netWire (http://www.dotnetwire.com). .netWire is a useful resource for
news on Microsoft .NET. This site is updated daily and includes a newsletters
section to help you catch up on events that you might have missed. The site
includes extensive coverage of ASP.NET, ADO.NET, .NET Framework,
SOAP, and Visual Studio .NET.

§ 123 ASPX (http://www.123aspx.com). 123 ASPX provides a listing of other
resources on ASP.NET. The links on this site are frequently updated. Also,
ASP.NET resources that have been frequently accessed on other ASP.NET
Web sites are frequently updated, providing you with links to the best
available resources on the Internet.

§ ASP 101 (http://www.asp101.com). ASP 101 provides links to useful articles
on ASP.NET. This site also provides links to other ASP.NET Web sites.

§ ASP Alliance (http://www.aspalliance.com). ASP Alliance provides a
number of useful articles on ASP.NET. The articles on the Web site are
grouped by category, making it easy to search for a specific topic.

§ DotNetJunkies (http://www.dotnetjunkies.com). DotNetJunkies includes
the latest news and articles on ASP.NET. It also provides a useful listing of
books available for programming in the .NET Framework. Apart from all this,
the site provides a section on ASP.NET FAQs (Frequently Asked Questions),
where you can resolve your queries about ASP.NET.

List of Tables
Chapter 4: Visual Basic .NET Basics

Table 4.1: Commonly Used Data Types in Visual Basic .NET
Table 4.2: Identifier Type Characters in Visual Basic .NET

Chapter 14: Getting Started with ASP.NET Web Services
Table 14.1: Web Service Architecture Layers
Table 14.2: Web Service Project Files Created by Visual Studio .NET

Appendix A: Keyboard Shortcuts in Visual Studio .NET
Table A.1: Keyboard Shortcuts for the Code Editor
Table A.2: Keyboard Shortcuts for the Form Designer
Table A.3: Keyboard Shortcuts for the Visual Studio .NET IDE

List of Sidebars
Chapter 5: Beginning with a Simple ASP.NET Application

Namespaces and Classes in ASP.NET Applications

Chapter 19: Tracing ASP.NET Applications
Status Codes Associated with Responses

